Principal findings
The main intention of our systematic review and meta-analysis was to assess as well as screen the critical results related to the effectiveness of applying technology-based educational tools for the nurses and nursing students in ICUs. Accordingly, this study was conducted to examine the prior studies on the effects of technology-based learning for nursing to provide the primary data for evidence-based nursing research by assessing the objective use of the characteristics as well as the effects of learning tools through a meta-analysis. To our knowledge, this investigation chiefly focuses on determining experimental interventions using educational tools to train special functions/skills, knowledge, self-confidence, attention, etc.
Overall, the ten studies included were evaluated as good quality studies but had some risk of bias. The results concerning the risk of bias, especially performance bias (i.e., the blinding of participants and personnel), can partly be explained by the chosen evaluation policy. In studies with high bias risk, neither participants nor personnel was blinded, whereas, in studies with low risk, participants were not blinded, but staff and assessors were blinded. Also, we assessed the quality of methodological quality of the included studies.
Ten studies included in this systematic review were conducted after 2016. Further, 60% of them were performed in Korea and Iran. This shows that technology-based learning has been around since 2010, when innovative technologies began to be widely distributed. In addition, it is an inevitable result that many studies have been conducted in Korea, where technology-based learning infrastructures have already been established [36]. This study provides evidence that technology-based learning has beneficial effects on various learning outcomes, including knowledge acquisition, trust, and satisfaction with learning compared to traditional learning methods [13, 37].
Three studies had focused on nursing students including senior nursing students and undergraduate final year. Most studies had been done on nurses since nurses in ICUs need basic training, and their job sensitivity is very high. The findings of this study can provide guidance for nursing instructors, indicating that the use of technology-based educational tools is an effective solution to transfer students from the learning environment to clinical practice. In this systematic review, skills, knowledge, performance trust, learning attitude, and learning satisfaction were essential and practical criteria for technology-based learning intervention studies.
The present meta-analysis has shown that in most cases, the effect of the intervention on the skills, knowledge, and self-confidence of the participants was powerful and significant. However, the magnitude and direction of the effect of technology-based learning on learning outcomes seem highly situational [3, 36]. As a result, the impact of modern learning tools is likely to be influenced by many, possibly confounding, factors that differ across different learning methods, topics, and outcomes. In some studies, the tests were executed between the post-intervention scores of the intervention and control groups, rather than between the mean differences from baseline evaluation.
In this study, the results of technology-based educational tools consisted of six studies that had measured skills, followed by five studies evaluating knowledge; three studies had assessed self-confidence in performance and learning satisfaction. Eventually, two investigations had checked the learning attention. Also, in this study, case–control interventional studies were included, while single-group before-after studies were excluded from the review to minimize the heterogeneity of the studies. Remarkably, five studies were performed in a quasi-experimental design. Indeed, it seems that considering the characteristics of nursing research performed on nurses and nursing students, there are certain limitations for the full implementation of such cases since quasi-experimental studies are equivalent to randomized trials.
Scientifically speaking, researchers should try to reduce the bias of quasi-experimental research to determine the impact of technology-based learning tools accurately. Most previous studies did not provide information on the course and timing of the intervention. Thus, more efforts should be made to correct this issue in future research [27, 32]. In addition, blinding research participants was impractical since the use of technology-based tools by nurses or students could not be hidden, so blinding nurses and students are tough. The meta-analysis results revealed that there was an overall positive effect size for the target variables. Improved skills, knowledge, performance confidence (confidence), as well as attitude in studies were reported, and differences were significant. Nevertheless, there was no positive effect on nurses’/students' attention; this may be due to the few studies that had evaluated the attention variable.
The results of our study led to similar results to the findings of recent meta-analyses related to learning based on new technologies in nursing education. Based on the systematic literature review by Voutilainen A. et al. [38], the applied e-learning method was more effective than the conventional teaching methods; the new techniques had the potential to improve the learning outcome significantly. Another meta-analysis revealed that smartphone-based mobile learning could effectively improve nursing students' attitudes and that the use of these smartphones had also a significant positive effect on improving knowledge and skills [36]. Another study proved that simulation-based learning had moderate to substantial effects on enhancing knowledge acquisition, self-confidence, and learning satisfaction among undergraduate nursing students [39].
Nevertheless, the difference between our study and recent meta-analyses was that we looked at educating nurses and students who were gaining knowledge and skills in the ICU, and their timely intervention was critical [3, 40]. Technical, assessment, relational, and teamwork competencies are all required for optimal performance. ICU nurses monitor patients, administer medications, assist patients with basic needs, chart care, and respond to emergencies. Unlike some other nurses, their patients are often intubated and ventilated [41]. They must know the ins and outs of more equipment than nurses who practice in a lower-stakes environment. Also, they are highly trained and skilled safety–critical professionals working as part of a multidisciplinary team [9, 31].
Based on the results of this systematic study, the included studies had significant limitations and challenges that cannot be ignored. The most critical challenges included limited sample size, limited generalization of the findings, and a short period of learning (limited timeframe) to evaluate the effectiveness of educational tools.
Strengths and limitations
This review has combined the results of risk of bias assessment (Cochrane tool) and meta-analysis. There have been strengths and weaknesses in this study. The strengths of the study are as follows: (1) applying an extensive search strategy to identify a large number of studies (3410 investigations), (2) conducting searches to retrieve studies in four important databases, including WOS, Scopus, Medline (through PubMed), and Embase, (3) reviewing and evaluating studies to extract data by five authors independently, (4) using comprehensive tools to evaluate the quality of included studies and to assess the risk of bias.
We have also encountered some limitations in this study. The difficulty of comparing studies is due to the heterogeneity of the results, so we interpreted outcomes with caution, and no generalization of the effects on nursing education seems appropriate. Also, book chapters, letters, non-English articles, and conference proceedings were excluded.