The study findings contribute to more profound understanding of the interplay between teachers’ and students’ regulation of learning activities. The interplay is expressed foremost in associations between the perceived benefit of virtual patient use and the study strategies of self-regulated learning and external regulation of learning. Overall, self-regulation was expressed moderately together with perceived benefit of virtual patient use. A positive association was also expressed between external regulation and perceived benefit of virtual patient use. However, when analysing the settings separately considering varying degrees of teacher regulation, a pattern could be discerned. In the setting with the lowest teacher regulation (characterised as “shared”), self-regulation was expressed positively in relationship with perceived benefit of virtual patient use, and external regulation was expressed negatively (Table 4). In the setting characterized by the highest teacher regulation (“strong,” setting 3), this pattern was reversed, with the expression of high external regulation and no self-regulation in relation to perceived benefit of virtual patient use. According to the theory of dynamics between teachers’ and students’ regulation of learning, this dynamic can either be dominated by teachers or students or shared between students and teachers [10, 18]. Following this theory, students in highly regulated settings need undertake the initiative to engage fully in learning tasks. By contrast, in loosely regulated settings, they risk not engaging at all. Setting 0 (not analysed) in this study presents such an example in which most students did not engage in the virtual patient-assisted learning activity. The perceived benefits were markedly higher in the more strongly regulated settings 2 and 3 (Fig. 1). In addition to teacher-regulation elements, students in these settings seemed to have used a mix of self-regulation and external regulation, with the lowest degree of self-regulation in setting 3.
The main difference between the two more strongly regulated settings 2 and 3 was that students in setting 3 were required to present the cases to a peer student group, whereas the students in setting 2 were not expected to do so. The requirement of case presentation in this setting led students to process the cases to greater extents than required in the other settings, even though additional time was allocated for case discussion in teacher-led seminars conducted in setting 2. This extra processing required group coordination and was, consequently, regulated by peers within the seminar group. This regulation may be productive for meaning-orientation in learners’ study focus. In this highly regulated setting, perceived benefit of virtual patient use was associated with external regulation not with self-regulation.
Analysis of the regression model suggested that both self-regulation and teacher regulation were associated with students’ perception of the benefits of VP learning activities. The estimates of the influence of external regulation strategy and setting in the regression model were greater than the influence of self-regulation when considering the influence of all variables on perceived benefit of VP use. A plausible interpretation is that the external regulation strategy was indeed important for the perceived benefit of the virtual patient learning activities. The influences of external regulation and teaching strategy on the degree of e-learning use and learning outcomes have been identified previously [35]. The possible greater influence of the external regulation strategy is surprising given the prominent role of self-regulation in web-based activities, as stated in the literature [15]. The combined influence of self- and external regulation strategies highlights that empowerment of autonomous learners may co-exist with students’ responsiveness to teachers’ involvement and guidance in the learning activities.
Therefore, teacher regulation and individual study strategies should be considered when designing VP-assisted learning activities, as well as from the perspective of developing self-regulation in learners [16, 36]. Self-regulation should be viewed from a wide, integrated perspective to nurture future lifelong autonomous learners [6, 12]. As is routine for integration of new elements into a course, the success of VP activities is often demonstrated by eliminating other course activities and ensuring that teachers convey the importance and alignment of VP activities with the intended learning objectives [21, 37]. Teachers introducing web-based technology resources as part of such an integration strategy must face the apparent conflict presented by the flexible opportunities of freedom in time and space and the benefits of regulating learning activities with assignments, feedback, and follow-up. The students in this study appreciated the flexibility in terms of time and space for self-study, but the combination with teacher-regulated discussion seemed to provide added benefits for learning. These discussions may also have contributed an increased perception of relevance of the VP activity in relation to the course examination. In the course settings, external regulation was exerted in several dimensions, for example, course requirements and participation in teacher-led seminars. External regulation can also to pertain to the specific interface design of the VP system itself. That means what is possible to do within the system, expectations that it conveys to students and built-in guidance. The VP system used here (Web-SP) features little built-in regulation and provides many possibilities, e.g., virtual lab-tests and physical examinations in no specified order.
The real-world setting with natural variations in the external regulation of the same course provided an opportunity to study the relationship between external regulation and self-regulation in authentic settings with conditions difficult to otherwise arrange in an ethical way. There are, however, some limitations worth mentioning. We did not control the occurrence of variations in teaching, and neither was it possible for us to observe and record all differences that could influence the students’ perception of the VP activity and the course settings. Thus, the comparison between settings should be interpreted with caution because of other possible variations than the ones highlighted here. Furthermore, the regression analysis is weakened by the fact that data levels of settings were not fully compatible with the variables based on summed scales of ranked items.
Some implications for the design of VP-learning activities can be derived from these findings. Teachers should provide external regulation supportive of VP activities. The higher values of perceived benefit of virtual patient use in both settings 2 and 3 indicated that external regulation is important for students to perceive virtual patient use as beneficial for their learning. The external regulation in these settings comprised essentially follow-up seminars, which, in turn, can be designed to support various means of further engaging students in deep learning and set the virtual patient cases in a broader clinical context. Moreover, peer presentations seemed to be a productive part of the external regulation. Directing students to further engage in VP case processing seemed to enhance the benefit of the VP-assisted learning activities, although it decreased the flexibility afforded by the VP technology to some extent. Future research should investigate ways of using external regulation to support learning, while using the benefits of flexible learning resources such as VPs. The processing characteristics of VPs should be considered when optimizing assignments and teacher regulation to put an autonomous student in charge of the virtual clinical reasoning process.
Ideally, the external regulation should be individually matched to levels of knowledge, progression and degree of autonomy with each student. However, regulation in a personally adapted scaffolding sense [20] can not be universally provided for heterogeneous student groups using open ended and exploratory methods like VPs. To some extent the regulation during seminars and peer regulation seem to fill this function but the teachers’ facilitating skills and awareness to regulation needs are still at the centre of this process. Consequently, there is much to gain from developing facilitator skills in successful guidance of exploratory and experiential learning and provide access to skilled facilitators in relation to VP activities [38].
Our assumption that the self-regulated learning strategy would influence the perceived benefit of the virtual patient activities was somewhat supported on a general level. However, influences from teacher and peer regulations seemed equally important, if not more important. The influence of external regulation highlights the importance of considering not only individual regulation strategies but also directing focus towards teacher and peer regulations supporting student learning with virtual patients.