Understanding physician cognitive traits is critical to professional development and education, as these skills may affect both clinical decisions and learner success. This study examined features of obstetrician decision making, coping skills, engagement in cognitive effort, ambituity tolerance, and anxiety in a large, diverse population of practicing obstetrician/gynecologists. We investigated the relationships between physicians’ personal and specialty characteristics and their scores on five established, validated scales of cognitive skills and affect. While few meaningful differences were identified based on demographic characteristics, we identified several differences in cognitive traits based on physician specialty. These findings may have clinical significance, as our prior work has demonstrated that there is an association between physician cognitive and affective traits and their patients’ obstetrical outcomes [9, 10]. Yet, no prior work has examined features underlying or contributing to these cognitive traits. Given the element of uncertainty occurring in the care of obstetrical patients, these findings may have implications for patient care as well as important applications to medical education and professional development.
In this observational study, we identified physicians who chose careers in the subspecialty of maternal-fetal medicine scored higher on two scales: the Multiple Stimulus Types Ambiguity Tolerance-II scale and the Need for Cognition scale. These results suggest that academic obstetricians with careers in maternal-fetal medicine have greater comfort with uncertainty and complexity and may have better coping in the setting of ambiguous stimuli. Similarly, these physicians also appear to have more adaptive decision making, greater self-esteem, and increased learner engagement, as reflected in the NFC scale. Learner engagement may be reflected in behaviors such as consulting the primary literature when faced with indecision, seeking out guidelines and medical literature to further clinical knowledge, promoting the learning and teaching process with peers and trainees, and performing adaptive clinical decision making that incorporates evolving situations and clinical knowledge. It is important to note that these traits exist on a continuum and the raw scores do not suggest that either type of physician has an “adaptive” versus “maladaptive” trait, but merely that there is a difference between the generalist and subspecialist obstetricians. Further research investigating trainees as well as more experienced clinicians is required to better understand whether these differences are a result of subspecialty training or are an underlying reason for career choice.
In addition, providers with the greatest delivery volume were noted to have lower scores on the NFC scale, which assesses engagement with learning and critical thinking. It is not clear if high volume obstetricians chose such practice styles due to this cognitive style or if a busy practice resulted in less time for engagement in reflective decision making and in-depth learning and processing. Interestingly, there were no other differences in these traits by other demographic features aside from the slightly higher proactive coping scores noted for women compared to men. The lack of difference in scores based on number of years in practice suggests cognitive skills may be somewhat intrinsic and less dependent on experience or career stage.
The primary applications for this study are in the realm of medical education and professional development. While we do not know whether individual cognitive traits measured herein are the reason for a career choice or a consequence of training in a specific manner, it is possible training and education focusing on coping skills and decision making could enhance physician professional development and quality of decisions. Physician learning does not stop with graduation from medical school or residency; instead, physicians are expected to continuously engage in thinking and learning, reflect on clinical decisions, and refine their practice patterns in response to their goals and outcomes. Yet, these data would suggest some obstetricians engage in these skills differently than others, and these differences may translate to differences in clinical care. It is increasingly clear that cognitive biases and cognitive efforts have relationships to patient care and clinical outcomes [1, 6, 17, 18]. One important application of this research is in learning how to provide physicians ongoing education and feedback about their decision making and copking skill set with the ultimate goal of improving patient care. Active engagement in “cognitive debiasing” education is one of many potential ways to help improve clinical reflection and problem solving skills [17, 19]. Finally, an additional application is in medical career counseling; it is possible that an improved understanding of one’s cognitive strengths may aid in choosing specialties and subspecialties that are best suited for each individual’s skills.
There are several limitations to consider. First, this study is limited to the obstetricians in practice at a single, large, university-based institution. These data may not be readily generalizable to other practice settings, such as those without residents or a university presence. However, the majority of providers at our institution completed the study and these providers represent a diverse population of ages, practice types, training backgrounds, ethnic groups, and years in practice. Second, in order to protect the identities of participants, physician demographic data was collected in as little detail as possible; for example, rather than asking exact age and number of years in practice, which could make a participant identifiable after also asking gender and race/ethnicity, such information was asked in ranges. This intentional strategy may have limited the granularity of the findings. Third, the subspecialist sample in this study was small. Although all 9 maternal-fetal medicine subspecialists in this institution completed the survey, this small sample size warrants further investigation in larger studies beyond a single university. Further, non-responders may have introduced selection bias, or providers may have felt social pressure to choose what they felt to be socially desirable responses on their survey. However, if these biases exist, we would expect them to bias toward the null hypothesis. Finally, an additional limitation of this exploratory study is the performance of multiple comparisons, which may increase risk of Type I error; however, in the setting of a hypothesis-generating study, the risk of Type I error is felt to be acceptable in exchange for reducing Type II error, as this small study is intended to raise questions for future work.