Development of the Western Blotting vLAB
Development process
There were two key development considerations: 1. the broader lesson had to be developed in view of the Muscle Diseases Practical and overall PATH3207 Musculoskeletal Diseases course learning objectives and 2. the Western Blotting vLAB had to be designed to achieve integration with the lesson about the molecular basis of muscular dystrophy whilst keeping it generic enough to be reusable in slightly varying contexts, i.e. teaching of Western Blotting for the purposes of technical skills only. The Software Development Life Cycle (SDLC) method is described a series of phases providing a model for software development and management of the Western Blotting vLAB (Additional file 1).
Western Blotting vLAB design
The Western Blotting vLAB was designed as a flexible, integrated formative experience which combined introductory information, tasks with associated questions and various embedded media such as short videos to enhance student learning. Deployment flexibility entailed the ability to publish the practical lesson for students in-class. This was the original intent, but the capacity is also available to deploy the vLAB for preparation and/or revision purposes. A range of key criteria were utilised in the design of the Western Blotting vLAB, based on best practice in eLearning [12, 15, 16] (Additional file 2).
VLAB interface, environment and navigation
The Western Blotting vLAB interface was kept consistent and simple to avert excess cognitive load. The vLAB emulated the real lab environment with high fidelity in terms of the type of materials and reagents. We ensured that the appearance and technical function of laboratory apparatus and instruments mirrored the real world as shown in Figures 1, 2 and 3. This helped to eliminate any distractions from the core learning objectives of conceptual understanding of the molecular basis of muscular dystrophy as well as technical skills.
The introductory screens included learning objectives, instructions and videos (Figures 1 and 2) to quickly orientate the learner to the technical aspects of Western Blotting in the context of diagnosing muscular dystrophy. Continual functions included forward and back options, and a return to main menu button on each screen (Figure 1). Embedded video links facilitated demonstration of technically more challenging aspects of the lab so that learning bottlenecks could be overcome via modelling, thus enabling students to progress through the vLAB in a timely manner (Figure 2). These elements were inserted in order to support student use of the equipment in the vLAB and also had the effect of diversifying the mode of presentation to maintain student engagement. This design approach facilitated students’ control of their learning as well as providing additional information on a specific concept, e.g. explaining the significance of a particular technical parameter such as loading the samples correctly into the SDS-PAGE gel lanes. Moreover, videos or animations of tasks involving hand motor skills have been found to lead to increased learning when compared to static images [17, 18].
Feedback and interactive features
In the context of laboratory experiments, interactivity and feedback are core features in promoting learning. Immediate feedback is vital for the learning process of technical and diagnostic skills and for correcting mistakes and misconceptions [12, 15, 19, 20]. Throughout the vLAB, students need to interact with the laboratory environment and with the concepts related to interpreting the results. This is achieved by utilising a variety of question formats (e.g. multiple choice, drop-down lists) with immediate feedback following students’ submission of responses (Figure 3). Additionally, some screens did not permit progress unless the laboratory task was attempted and feedback received. In some instances, the screen was reset after feedback was received. This was intended to ensure that students engaged with the content at their own pace, rather than clicking through the laboratory environment without engaging with the technical and theoretical aspects of the laboratory. Self-paced, guided learning has been shown to improve learning [21]. The diagnosis of muscular dystrophy and related technical issues were addressed in the ‘Results’ section of the vLAB (Figure 3A, B, C). A series of multiple choice questions with drop-down menus shown in Figure 3A were provided to the students with adaptive feedback appropriate to students’ choices. As laboratory data showing various outcomes from each Western Blot were revealed on each successive screen, formative assessment questions and relevant feedback were presented regarding the diagnostic implications of protein expression patterns (Figure 3C).
Deployment and evaluation
In 2011, we documented student user experience and engagement using questionnaires and in class observations of the vLAB use by students for the purposes of implementing improvements in subsequent deployments. Student feedback and technical observations from the first deployment in 2011 were taken into account before the second deployment in 2012. The third deployment in 2013 had no additional changes from 2012.
Student groups
The student cohorts undertaking the Musculoskeletal Diseases course in 2011 (n = 80), 2012 (n = 73) and 2013 (n = 59) were divided into two groups of approximately equal size for the Muscle Diseases practical classes. Group 1 was asked to attempt the vLAB first while group 2 completed the real lab. Halfway through the 2-hour class, groups 1 and 2 swapped lab environments (Figure 4). The same strategy was applied again in 2012 and 2013. We documented feedback on the logistics of running the vLAB in 2011 given by student users so that we could implement improvements in 2012 and again in 2013 which had the general effects of streamlining vLAB interactions and improving lesson flow.
Evaluation questionnaires
We designed a questionnaire addressing the technical and diagnostic skills covered by the vLAB. These questionnaires were provided electronically to all students upon completion of the practical class. The questionnaire provided in Additional file 3, used a combination of 3 point (eg. ‘Yes, Not sure, No’), 4 point (‘no it did not - > yes’) and 5-point Likert scale questions to enable students to report their perceived understanding, confidence and learning of technical and diagnostic skills in the vLAB and the real lab environments. This study was approved by the UNSW Human Research Ethics Committee (UNSW Ethics no. HC13004).
Statistical analysis
Mann–Whitney U tests were used to compare the distribution of ordinal questionnaire data between groups in each year. A p value of <0.05 was considered significant.