Skip to content

Advertisement

You're viewing the new version of our site. Please leave us feedback.

Learn more

BMC Medical Education

Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Sustained impact of a short small group course with systematic feedback in addition to regular clinical clerkship activities on musculoskeletal examination skills-a controlled study

  • Martin Perrig1Email author,
  • Christoph Berendonk2,
  • Anja Rogausch2 and
  • Christine Beyeler2
BMC Medical EducationBMC series – open, inclusive and trusted201616:35

https://doi.org/10.1186/s12909-016-0554-z

Received: 20 September 2014

Accepted: 22 January 2016

Published: 28 January 2016

Abstract

Background

The discrepancy between the extensive impact of musculoskeletal complaints and the common deficiencies in musculoskeletal examination skills lead to increased emphasis on structured teaching and assessment. However, studies of single interventions are scarce and little is known about the time-dependent effect of assisted learning in addition to a standard curriculum. We therefore evaluated the immediate and long-term impact of a small group course on musculoskeletal examination skills.

Methods

All 48 Year 4 medical students of a 6 year curriculum, attending their 8 week clerkship of internal medicine at one University department in Berne, participated in this controlled study. Twenty-seven students were assigned to the intervention of a 6×1 h practical course (4–7 students, interactive hands-on examination of real patients; systematic, detailed feedback to each student by teacher, peers and patients). Twenty-one students took part in the regular clerkship activities only and served as controls. In all students clinical skills (CS, 9 items) were assessed in an Objective Structured Clinical Examination (OSCE) station, including specific musculoskeletal examination skills (MSES, 7 items) and interpersonal skills (IPS, 2 items). Two raters assessed the skills on a 4-point Likert scale at the beginning (T0), the end (T1) and 4–12 months after (T2) the clerkship. Statistical analyses included Friedman test, Wilcoxon rank sum test and Mann-Whitney U test.

Results

At T0 there were no significant differences between the intervention and control group. At T1 and T2 the control group showed no significant changes of CS, MSES and IPS compared to T0. In contrast, the intervention group significantly improved CS, MSES and IPS at T1 (p < 0.001). This enhancement was sustained for CS and MSES (p < 0.05), but not for IPS at T2.

Conclusions

Year 4 medical students were incapable of improving their musculoskeletal examination skills during regular clinical clerkship activities. However, an additional small group, interactive clinical skills course with feedback from various sources, improved these essential examination skills immediately after the teaching and several months later. We conclude that supplementary specific teaching activities are needed. Even a single, short-lasting targeted module can have a long lasting effect and is worth the additional effort.

Keywords

Musculoskeletal SystemPhysical ExaminationClinical CompetenceUndergraduate Medical EducationClinical ClerkshipFeedbackCompetency-Based Education

Background

Musculoskeletal complaints are highly prevalent with great impact on quality of life and socioeconomic costs due to outpatient and inpatient care, inability to work and disability [1]. Clinical skills are vital for physicians to provide good quality patient care [2]. It has been repeatedly demonstrated that an accurate history and physical examination lead to the exact diagnosis in more than 80 % of all cases [35]. However, novice physicians may be incompetent in these basic clinical skills [6]. These shortcomings seem to be particularly apparent in musculoskeletal medicine [68] and result in missing locomotor symptoms and signs, and omitting of treatment of symptomatic patients [9, 10].

Several studies concluded that “medical school preparation in musculoskeletal medicine is inadequate” [1114]. Consequently, several calls for the development of core recommendations for undergraduate medical education curricula of the minimum level of competence in managing patients with musculoskeletal problems were expressed [11, 15, 16]. These appeals lead to increased emphasis on structured teaching and assessment of musculoskeletal skills [17, 18]. The GALS (Gait Arms Legs and Spine) test [19] is such an example of a well-structured, quick screening examination of the musculoskeletal system and is a sensitive and valid indicator of musculoskeletal functional ability [20]. It has been shown that by incorporating GALS in the undergraduate medical curriculum, Year 3 medical students performed well in an end of year musculoskeletal station of an Objective Structured Clinical Examination (OSCE) [21]. However, this effect’s generalization was questioned [22] and a call for implementing a standardized approach to musculoskeletal clinical teaching superseding GALS was suggested [23].

Once an abnormality of the musculoskeletal system has been identified by a screening functional test, a more detailed regional examination has to be performed [24]. However, it is less clear which particular skills have to be mastered [25, 26]. For that very reason, core sets of regional musculoskeletal examination skills were put together for medical students at the point of qualification [26, 27]. In addition, communication skills and professional attitudes were incorporated into the recommended basic competencies [16].

Nevertheless, the question of how these core competencies in musculoskeletal examination skills can be taught and assessed in the demanding clinical setting remains a matter of ongoing search. A best evidence in medical education systematic review of strategies and their effectiveness summarized published studies on structured educational interventions in undergraduate and postgraduate settings [28]. There was support that small-group instructions with supervision and feedback were core elements for an effective teaching of clinical skills in musculoskeletal medicine [29, 30]. Several studies have investigated practical interactive learning with patients, tutors and peers within curricular series with mixed teaching formats [3137]. However, results of single interventions are scarce. Furthermore, little is known about the time-dependent effect of assisted learning in addition to a standard curriculum. To our knowledge only few studies documented a favorable effect of a supplementary approach to musculoskeletal system training at the time of an end-of-year OSCE [21, 38] or even later on [29].

We therefore addressed the following questions in this study:
  1. (1)

    To what extent do medical students’ musculoskeletal examination skills improve during regular undergraduate clerkships assessed by structured observation?

     
  2. (2)

    What is the impact of an additional 6-h interactive course (embedded in the regular clerkship activities) on musculoskeletal examination skills?

     
  3. (3)

    In case of an added impact, does the success persist over several months after the intervention?

     

Methods

Regular teaching and learning activities

This controlled intervention study was carried out at the University of Berne, Switzerland, where a 6 year undergraduate medical training program takes place. Years 1–3 are built up of comprehensive lectures, problem based tutorials and specific clinical skills training. During this preclinical period, musculoskeletal examination is taught in a 4×2 h skills training in Year 3. This is a small group teaching with written learning objectives, various learning materials and hands-on exercises among peers without involving patients, and with feedback by teachers and peers. At the end of Year 3 these skills are assessed by a specific 10 min station within an interdisciplinary Objective Structured Clinical Examination (OSCE) test.

Years 4–6 consist of lectures and clinical training in various forms and settings. There are two clerkship periods. The first one situated in Years 4 and 5 included 9 different clerkships at the time of the study in 2006 and 2007: internal medicine (8 weeks), surgery (6 weeks), pediatrics (6 weeks), pathology (6 weeks), gynecology and obstetrics (4 weeks), psychiatry (4 weeks), dermatology (3 weeks), ENT (3 weeks) and ophthalmology (3 weeks). The students rotate in small groups (up to 7 individuals, each group in a different order and in different teaching hospitals). The second one is the elective period in Year 6, where students can choose different clerkships during a total of 40 weeks.

Our study was situated in the 8-week internal medicine rotation of the first clerkship period in one teaching hospital. During this period the students are supposed to gain experience in history taking, physical examination, inter-professional and patient communication as well as professional behavior. The students are aware of the Swiss Catalogue of Learning Objectives for Undergraduate Medical Training (SCLO) [39] and have access to various learning materials such as books, scripts, e-learning programs and the interdisciplinary skills centre. During this clerkship the students collaborate with the medical team in the everyday clinical work. Typically, there is one-to-one, formally unstructured teaching by the assigned resident, yet without systematic supervision and without regular feedback as a matter of routine.

Subjects

The subjects of this study consisted of Year 4 medical students of the University of Berne. Each year the students’ office allocated four clerkship groups composed by convenience to the Department of General Internal Medicine, University Hospital of Berne, with a total of 26 students out of 154 in 2006 and 22 students out of 153 in 2007. This procedure was completely independent of this study. Each year, two out of the four clerkship groups were allocated to the intervention described below. This block allocation was dependent on the availability of the teacher only. She was neither given any information about the participants nor had any influence on their allocation. Thereby, in 2006 the second and third clerkship group (March–June), and in 2007 the first and second clerkship group (January–April) took part in the intervention, resulting in a total of 27 students. The other four clerkship groups served as controls with a total of 21 students. At the beginning of the clerkship all 48 students received the learning objectives and references of various learning materials specific for the musculoskeletal examination. The 21 control students were not offered supplemental faculty attention in addition to the regular teaching activities described above. The study protocol and all additional documents requested - including assessment forms, information sheets and consent forms - were presented to the responsible ethical committee of the Medical Faculty of the University of Berne. The “Kantonale Ethikkommission” KEK [40] decided that the study was exempt from formal ethical approval because the relevant legislations related to drugs and clinical research were not concerned. All students volunteered to participate and gave written informed consent.

Intervention

The intervention consisted of an interactive course about the examination of the musculoskeletal system integrated into the regular clerkship activities described above. The students were taught in small groups with 4–7 participants during 6 lessons of 1 h each based on the identical learning objectives and learning materials applied to the regular teaching in Year 3. The teacher was an experienced specialist in rheumatology. For every lesson an inpatient from the Department of Internal Medicine volunteered to participate. Each lesson focused on the examination of one or two regions of the musculoskeletal system: shoulder, elbow, hand, hip, knee, foot and back. The essential and important aspects of the physical examination were covered including the correct verbalization of the findings. Special emphasis was also put on the interaction with the patient, i.e., how to communicate with the patient and to behave in a professional manner. Each student was expected to actively practice the skills either with the patient or with a peer, followed by formative feedback from the patient, the peers and the tutor (“supported participation” [41]).

Assessments

The students’ competencies in musculoskeletal examination were assessed at the beginning (T0), the end (T1) and 4–12 months after completion of this particular clerkship (T2) by an OSCE-like 10 min testing station [42, 43]. The students were asked to perform different tasks with a standardized patient and to summarize their findings. The students were familiar with this assessment format after passing the Year 3 OSCE one year before. However, no practice runs were offered - neither to the intervention nor to the control students. The tasks were similar but not identical to the tasks which had been covered during the instructional course. Therefore, the tasks were deliberately chosen in order to avoid the teaching to the test phenomenon. The students were rated with respect to 9 clinical skills (CS; Table 1). Seven skills were related to specific aspects of the musculoskeletal examination (MSES): inspection, palpation, joint and spine movements including documentation, trigger tests and verbalization of physical findings. Two skills were related to interpersonal skills (IPS): communication with the patient and professional behavior. The competencies were assessed on a 4-point Likert scale based on specified criteria by two independent raters. In 2006, for each assessment session the team of two raters was recruited out of five different specialists, three of whom were not blinded to the intervention due to logistic reasons. In 2007, the raters were two specialists in general internal medicine blinded to the intervention. All were experienced clinicians and had been teaching and examining for several years. The teacher of the musculoskeletal examination course was deliberately not acting as a rater.
Table 1

Inter-rater agreement within the two study cohorts (2006 and 2007)

Task

Kendall’s Tau-b (2006)

Kendall’s Tau-b 2007)

T0

T1

T2

T0

T1

T2

Clinical Skills (CS)

Musculoskeletal Examination Skills (MSES)

Inspection

0.79

0.57

0.78

0.59

0.53

0.64

Palpation of anatomic landmarks

0.46

0.81

1.00

0.52

0.49

1.00

Movements of one joint

0.81

0.69

(.)a

0.81

0.80

(.)a

Documentation of joint movements

0.67

1.00

0.78

0.84

0.83

0.58

Movements of the spine

0.78

0.76

0.98

0.77

0.64

0.54

Trigger test

0.71

0.72

0.67

0.59

0.70

0.80

Verbalization of physical findings

0.54

0.47

0.63

0.50

0.55

0.75

Interpersonal Skills (IPS)

Communication with patient

0.63

0.53

0.65

0.31

0.74

0.30

Professional behavior

0.41

−0.22

0.27

0.20

0.68

0.57

a Not computable due to non-varying ratings of one rater

Statistical analyses

Internal consistency (Cronbach’s Alpha) and inter-rater agreement (Kendall’s tau-b) were examined within the two study cohorts separately. Subsequently, ratings of the two raters were averaged for further statistical analyses. Means of all 9 ratings were computed to a total score of clinical skills (CS). In addition, the 7 ratings related to the musculoskeletal examination skills (MSES) and the 2 ratings related to the interpersonal skills (IPS) were calculated separately (means and standard deviations are presented). As students of the cohorts 2006 and 2007 showed comparable improvements from T0 to T1 and T2, it was justified to jointly analyze the two study cohorts as a combined sample.

Statistical analyses included Friedman tests for the differences between the different measuring times (T0, T1, T2) within both groups (control and intervention), followed by Wilcoxon rank sum tests for more detailed analyses. To analyze differences between the intervention and control group as well as a possible bias in dropouts, students’ performance was compared between these groups by Mann-Whitney U test. Statistical analyses were performed using SPSS, Version 15. The level of significance was set at p = 0.05 with two sided testing.

Results

Sample characteristics

All 48 students (52 % female; mean age 25 years) attending their clerkship in internal medicine at the Department of General Internal Medicine, University Hospital of Berne in 2006 and 2007 were enrolled in this study: 27 students were allocated to the intervention group and 21 students to the control group.

All students participated in the pre-test (T0) at the beginning and in the post-test (T1) at the end of the 8-week clerkship. On average, the control students had attended a slightly longer period of clinical training before T0 compared to intervention students (5.5 and 3.5 months in clerkship, respectively). The control and intervention students were comparable regarding attending in clerkship specialties related to the musculoskeletal system prior to participating in the study. About three quarters of the students (n = 35, 73 %) had already participated in a clerkship in surgery, orthopedics or rheumatology before the baseline assessment T0. About half of the students (n = 26, 54 %) took part at the follow-up-test (T2), (see Fig. 1), which on average took place 6.5 months (control group) and 8.5 months (intervention group) after T1 respectively. No significant differences in pre- or post-test performances (T0, T1) were found between students participating in the follow-up-test (T2) and those who dropped out.
Fig. 1

Sample of the study participants in 2006 and 2007

Inter-rater agreement and internal consistency

For the assessments in 2006, the Cronbach’s Alpha for the 9-item test at T0 was 0.61, at T1 0.47 and at T2 0.78, respectively. The corresponding values for 2007 were 0.73 (T0), 0.80 (T1) and 0.83 (T2), respectively. Table 1 shows the inter-rater reliability for each test item at the different testing times within the two study cohorts (2006 and 2007).

Change of skills over time

At the beginning of the clerkship (T0), the intervention group (CS: 2.97 ± .40; MSES: 2.85 ± .46; IPS: 3.38 ± .50) and the control group (CS: 3.12 ± .44; MSES: 3.05 ± .48; IPS: 3.35 ± .44) performed equally (Mann-Whitney U test: n.s.). The intervention group changed markedly in its performance over time (Friedman test p < 0.001 for CS, p < 0.001 for MSES and p < 0.01 for IPS), whereas the control group did not (Friedman test for CS, MSES and IPS: all n.s.).

Effect of the intervention

In detail, the intervention group showed significantly higher skills compared to baseline T0 with respect to all criteria after participation in the interactive course (T1 CS: 3.40 ± .30, Wilcoxon test p < 0.001; MSES: 3.29 ± .33, p < 0.001; IPS: 3.80 ± .29, p < 0.001), (Fig. 2). In contrast, the control group did not show a change in these specific skills during the clerkship (T1 CS: 3.05 ± .41; MSES: 2.97 ± .39; IPS: 3.33 ± .58, all n.s.). Thus, at T1 the two groups differed with respect to all dimensions (Mann-Whitney U test: CS: p < 0.01; MSES: p < 0.01; IPS: p < 0.01). Analyzing the two cohorts of 2006 and 2007 separately did not change the results, but showed the same effect of the intervention.
Fig. 2

Effect of the interactive small group course immediately after the clerkship. Mean and standard deviation of clinical skills (CS), musculoskeletal examination skills (MSES) and interpersonal skills (IPS) of 48 students within the control (Co) or the intervention (Int) group before (T0, □) and immediately after (T1, ■) the clerkship. *** p < 0.001

On follow-up-test (T2), the intervention group still showed an enhanced proficiency compared to baseline (T0) for clinical skills (CS: 3.49 ± .40; Wilcoxon test p = 0.001) and musculoskeletal examination skills (MSES: 3.50 ± .39; p = 0.001), but not for interpersonal skills (IPS: 3.47 ± .55), which deteriorated during follow-up. The differences between the post-test (T1) and the follow-up-test (T2) were in part significant (CS: p < 0.10; MSES: p < 0.05; IPS: p < 0.05). In contrast, the control group did not show any significant improvement over time (T2 CS: 3.27 ± .48; MSES: 3.30 ± .49; IPS: 3.18 ± .55), but remained on the same skills level (Fig. 3).
Fig. 3

Effect of the interactive small group course several months after the clerkship. Mean and standard deviation of clinical skills (CS), musculoskeletal examination skills (MSES) and interpersonal skills (IPS) within the control (Co) or intervention (Int) group of those 26 students who completed the assessment immediately after the clerkship (T1, ■) and several months later (T2, gray box). * p < 0.05

Discussion

This study assessed to what extent medical students’ musculoskeletal examination skills improved during regular undergraduate clerkship in internal medicine and explored the impact of an additional 6-h interactive small group course embedded in the everyday clerkship activities.

At the beginning of the clerkship all students demonstrated basic musculoskeletal examination skills as a result of the clinical skills training during Year 3. Although, on average, the students in the control group had attended a slightly longer period of clinical training before the first assessment applying structured observation (T0), they did not show better baseline performance compared to the students in the intervention group. In addition, there was no significant increase in these clinical skills detectable, neither immediately after the clerkship in internal medicine nor at the end of the whole clerkship period with rotations through various disciplines over a total of 43 weeks. In contrast, the students attending an additional 6-h course integrated into the clerkship in internal medicine showed significantly improved musculoskeletal examination skills. The benefit of this specific intervention was detectable both immediately and several months after the course.

Our findings illustrate that Year 4 medical students are not able to further improve their musculoskeletal examination skills by their own prompting and indicate the limited influence of regular clerkship activities. Bloomfield et al. analyzed the learning activities of final year students and concluded that clinical clerkships would become more efficient when goals, teaching/learning methods and assessments are brought into better alignment as the students’ learning activities seemed to be driven by the assessments [44]. Nevertheless, our control students showed no improvement of their clinical skills although they were explicitly referred to the learning objectives and various learning materials specific for the musculoskeletal examination skills, even though they knew about the test at the end of the clerkship. This assessment obviously had no significant effect on their acquisition of musculoskeletal examination skills. The kind of assessment might play an important role, since our tests were purely formative in contrast to the summative final examinations mentioned in Bloomfield’s study.

The ineffectiveness of the routine clerkship in respect to the acquisition of musculoskeletal examination skills might also be explained by the observation that many regular clinical teaching activities are passive, low-level cognitive actions and do not provide an ideal learning environment [4547]. In addition, students might not be aware of their gaps in learning, since confidence does not necessarily reflect competence [48]. However, students appreciate active learning including coaching, feedback (in particular feedback on history taking and physical examination [49]) and supervision while interacting with patients [50]. In addition, there is some evidence that the time spent on activities involving direct patient contact is positively related to students’ perceptions of the quality of their learning environment [51]. In order to reduce the gap between what is most valued and what is delivered in the clinical context protected teaching time with close student-teacher interaction is warranted [47]. Medical schools cannot rely on clerkship experiences alone to achieve basic skills training but need to offer additional support [52]. Duvivier et al. findings on the influence of the workplace on learning physical examination skills can direct future developments [53]. Their qualitative approach with focus groups identified helpful factors such as making findings explicit through patient files or during observation, feedback by abnormal findings and taking initiative. Hindering factors included lack of supervision, uncertainty about tasks and expectations, and social context such as hierarchy of learners and perceived learning environment.

We introduced an interactive course. The core elements were small-group teaching by a specialist, hands-on examination of real patients, and in particular supervision with systematic and detailed feedback by teacher, peers and patients. We confirmed that these are important elements indeed to improve musculoskeletal examination skills in line with Dolmans’ et al. results according to which high-quality supervision improved the effectiveness of clinical rotations [30]. Our findings also correspond to the results of Lawry et al. who demonstrated that small-group teaching was superior to other methods to train Year 2 students in musculoskeletal screening skills, in particular regarding the persistence of the skills over several months [29]. Our data confirm that specific small group teaching in combination with other elements have a long lasting effect on the improvement of musculoskeletal examination skills of Year 4 students. However, our findings are not consistent with the results of Smith et al. who found structured clinical instruction modules to be partly inferior to small bedside group tutorials [54]. Although, those groups were not comparable in respect to teaching time (3 versus 20 h) and group size (24–26 versus 9–10 students), factors essential for the teaching effectiveness.

We chose a specialist in rheumatology as teacher for our course. She was familiar with the curriculum and the expected level of competence of Year 4 students. Due to limited teaching resources some authors involved other individuals in the teaching of musculoskeletal examination skills to medical students. They could demonstrate that patient partners [55], patient educators [5661], nurses [62] and physiotherapists [63] were as effective teachers as physicians, or neither better or worse, but complementary to physicians [64, 65]. Even the participation of medical students as teachers in a structured peer-assisted learning is another option to enhance clinical examination skills training [66, 67]. Whether non-academic teachers could also achieve the long-lasting effect of a short 6-h intervention on musculoskeletal examination skills over several months as demonstrated by this paper, needs to be studied further. In addition, comparison with the introduction of workplace based assessments like the Mini-Clinical Evaluation Exercises (Mini-CEX), characterized by observations during regular clinical practice followed by feedback [68], could analyze the effect on musculoskeletal examination skills. In any case, effective measures have to be taken at counteracting the decline of physical examination skills observed over the last decades [69] and the resistance to change in daily practice [70].

There are some limitations to our study. First, the students’ scores at the beginning of the clerkship were already at the upper range of the rating scale suggesting that a further improvement would be difficult to demonstrate (ceiling effect). Nevertheless, the results of the OSCE showed a significant increase from T0 to T1 in the intervention group compared to the control group even with respect to the interpersonal skills that were rated with the highest scores. Second, for more advanced students with increased clinical competence, global scores might be more appropriate compared to detailed checklists [71]. Third, we found an immediate benefit of the course on communication skills and professional behavior, which declined after several months. This finding has to be interpreted with some caution. The items regarding communication and professional behavior were rather unspecific and left room for interpretation. In addition, the inter-rater agreement was quite low. For future studies, more specific rater training regarding the assessment of communication and professional behavior or the use of a more specific instrument might be useful. Fourth, in 2006 three out of five raters were not blinded to the intervention due to logistic reasons. Nevertheless, the improvement of the OCSE scores over time from T0 to T1 and T2 were comparable in 2007, where the two raters involved were blinded to the intervention. Fifth, whereas all students took part in the T0 and T1 assessment at the beginning and the end of the clerkship, 54 % only participated in the completely optional follow up assessment T2 several months later. Although at this time the students were present on the campus for lectures, competition with preparing summative exams, earning money and various other activities became evident. Nevertheless, the dropout observed was independent of pre- and post-test performance.

Conclusions

In conclusion, Year 4 medical students had difficulties improving their musculoskeletal examination skills during their regular clerkship activities. However, an additional short interactive small group teaching course with hands-on examination of real patients and feedback from various sources was effective to the learning of these essential skills with a sustained impact over several months.

Abbreviations

CS: 

clinical skills

GALS: 

gait arms legs and spine test

IPS: 

interpersonal skills

MSES: 

musculoskeletal examination skills

OSCE: 

objective structured clinical examination

T0: 

time at the beginning of the clerkship

T1: 

time at the end of the clerkship

T2: 

time several months after the clerkship

Declarations

Acknowledgements

We thank Prof U. Bürgi for his support of the study, the senior staff of the Department of General Internal Medicine, University Hospital of Berne, for the recruitment of suitable patients for the instructional course and all students for their participation in the assessments; Dr F. Nohl, Dr V. Maier, Dr H. Burmeister, Dr E. Voegelin for rating the students; all simulated patients for participating in the student ratings; R. Hess for statistical analyses, Dr R. Hofer for statistical advice and Susan Smith for language editing.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Department of General Internal Medicine, University Hospital of Berne
(2)
Assessment and Evaluation Unit, Institute of Medical Education, University of Berne

References

  1. BFS: Medizinische Statistik der Krankenhäuser In. www.bfs.admin.ch/bfs/portal/de/index/themen/14/04/01/key/diagnosen.html. Accessed date 10 Sept. 2014).
  2. Reilly BM. Physical examination in the care of medical inpatients: an observational study. Lancet. 2003;362(9390):1100–5.View ArticleGoogle Scholar
  3. Hampton JR, Harrison MJ, Mitchell JR, Prichard JS, Seymour C. Relative contributions of history-taking, physical examination, and laboratory investigation to diagnosis and management of medical outpatients. Br Med J. 1975;2(5969):486–9.View ArticleGoogle Scholar
  4. Peterson MC, Holbrook JH, Von Hales D, Smith NL, Staker LV. Contributions of the history, physical examination, and laboratory investigation in making medical diagnoses. West J Med. 1992;156(2):163–5.Google Scholar
  5. Roshan M, Rao AP. A study on relative contributions of the history, physical examination and investigations in making medical diagnosis. J Assoc Physicians India. 2000;48(8):771–5.Google Scholar
  6. Fox RA, Ingham Clark CL, Scotland AD, Dacre JE. A study of pre-registration house officers’ clinical skills. Med Educ. 2000;34(12):1007–12.View ArticleGoogle Scholar
  7. Ahern MJ, Soden M, Schultz D, Clark M. The musculo-skeletal examination: a neglected clinical skill. Aust N Z J Med. 1991;21(3):303–6.View ArticleGoogle Scholar
  8. Schmale GA. More evidence of educational inadequacies in musculoskeletal medicine. Clin Orthop Relat Res. 2005;437:251–9.View ArticleGoogle Scholar
  9. Doherty M, Abawi J, Pattrick M. Audit of medical inpatient examination: a cry from the joint. J R Coll Physicians Lond. 1990;24(2):115–8.Google Scholar
  10. Lillicrap MS, Byrne E, Speed CA. Musculoskeletal assessment of general medical in-patients--joints still crying out for attention. Rheumatology. 2003;42(8):951–4.View ArticleGoogle Scholar
  11. Bernstein J, King T, Lawry GV. Musculoskeletal medicine educational reform in the Bone and Joint Decade. Arthritis Rheum. 2007;57(7):1109–11.View ArticleGoogle Scholar
  12. Freedman KB, Bernstein J. The adequacy of medical school education in musculoskeletal medicine. J Bone Joint Surg (Am Vol). 1998;80(10):1421–7.View ArticleGoogle Scholar
  13. Freedman KB, Bernstein J. Educational deficiencies in musculoskeletal medicine. J Bone Joint Surg (Am Vol). 2002;84-A(4):604–8.View ArticleGoogle Scholar
  14. Day CS, Yeh AC, Franko O, Ramirez M, Krupat E. Musculoskeletal medicine: an assessment of the attitudes and knowledge of medical students at Harvard Medical School. Acad Med. 2007;82(5):452–7.View ArticleGoogle Scholar
  15. Dequeker J, Esselens G, Westhovens R. Educational issues in rheumatology. The musculoskeletal examination: a neglected skill. Clin Rheumatol. 2007;26(1):5–7.View ArticleGoogle Scholar
  16. Woolf AD, Walsh NE, Akesson K. Global core recommendations for a musculoskeletal undergraduate curriculum. Ann Rheum Dis. 2004;63(5):517–24.View ArticleGoogle Scholar
  17. Coady D, Walker D, Kay L. The attitudes and beliefs of clinicians involved in teaching undergraduate musculoskeletal clinical examination skills. Med Teach. 2003;25(6):617–20.View ArticleGoogle Scholar
  18. Skelley NW, Tanaka MJ, Skelley LM, LaPorte DM. Medical student musculoskeletal education: an institutional survey. J Bone Joint Surg (Am Vol). 2012;94(19), e146. 141–147.View ArticleGoogle Scholar
  19. Doherty M, Dacre J, Dieppe P, Snaith M. The ‘GALS’ locomotor screen. Ann Rheum Dis. 1992;51(10):1165–9.View ArticleGoogle Scholar
  20. Plant MJ, Linton S, Dodd E, Jones PW, Dawes PT. The GALS locomotor screen and disability. Ann Rheum Dis. 1993;52(12):886–90.View ArticleGoogle Scholar
  21. Fox RA, Dacre JE, Clark CL, Scotland AD. Impact on medical students of incorporating GALS screen teaching into the medical school curriculum. Ann Rheum Dis. 2000;59(9):668–71.View ArticleGoogle Scholar
  22. Lee MA. What is the evidence that utilizing the GALS assessment while teaching medical students improves their skills at examining the musculoskeletal system? Rheumatology. 2010;49(9):1783–4.View ArticleGoogle Scholar
  23. Blake T. Teaching musculoskeletal examination skills to UK medical students: a comparative survey of Rheumatology and Orthopaedic education practice. BMC Med Educ. 2014;14:62.View ArticleGoogle Scholar
  24. Uchida T, Farnan JM, Schwartz JE, Heiman HL. Teaching the physical examination: a longitudinal strategy for tomorrow’s physicians. Acad Med. 2014;89(3):373–5.View ArticleGoogle Scholar
  25. Kay LJ, Coady DA, Walker DJ. Joints: if relevant. Do available textbooks contain adequate information about musculoskeletal examination skills for medical students? Med Teach. 2001;23(6):585–90.View ArticleGoogle Scholar
  26. Coady D, Walker D, Kay L. Regional Examination of the Musculoskeletal System (REMS): a core set of clinical skills for medical students. Rheumatology. 2004;43(5):633–9.View ArticleGoogle Scholar
  27. Gowda D, Blatt B, Fink MJ, Kosowicz LY, Baecker A, Silvestri RC. A core physical exam for medical students: results of a national survey. Acad Med. 2014;89(3):436–42.View ArticleGoogle Scholar
  28. O’Dunn-Orto A, Hartling L, Campbell S, Oswald AE. Teaching musculoskeletal clinical skills to medical trainees and physicians: a Best Evidence in Medical Education systematic review of strategies and their effectiveness: BEME Guide No. 18. Med Teach. 2012;34(2):93–102.View ArticleGoogle Scholar
  29. Lawry 2nd GV, Schuldt SS, Kreiter CD, Densen P, Albanese MA. Teaching a screening musculoskeletal examination: a randomized, controlled trial of different instructional methods. Acad Med. 1999;74(2):199–201.View ArticleGoogle Scholar
  30. Dolmans DH, Wolfhagen IH, Essed GG, Scherpbier AJ, van der Vleuten CP. The impacts of supervision, patient mix, and numbers of students on the effectiveness of clinical rotations. Acad Med. 2002;77(4):332–5.View ArticleGoogle Scholar
  31. Smith CC, Newman L, Davis RB, Yang J, Ramanan R. A comprehensive new curriculum to teach and assess resident knowledge and diagnostic evaluation of musculoskeletal complaints. Med Teach. 2005;27(6):553–8.View ArticleGoogle Scholar
  32. Bilderback K, Eggerstedt J, Sadasivan KK, Seelig L, Wolf R, Barton S, et al. Design and implementation of a system-based course in musculoskeletal medicine for medical students. J Bone Joint Surg (Am Vol). 2008;90(10):2292–300.View ArticleGoogle Scholar
  33. Saleh K, Messner R, Axtell S, Harris I, Mahowald ML. Development and evaluation of an integrated musculoskeletal disease course for medical students. J Bone Joint Surg (Am Vol). 2004;86-A(8):1653–8.View ArticleGoogle Scholar
  34. Branch VK, Graves G, Hanczyc M, Lipsky PE. The utility of trained arthritis patient educators in the evaluation and improvement of musculoskeletal examination skills of physicians in training. Arthritis Care Res. 1999;12(1):61–9.View ArticleGoogle Scholar
  35. Kelly M, Bennett D, Bruce-Brand R, O’Flynn S, Fleming P. One week with the experts: a short course improves musculoskeletal undergraduate medical education. J Bone Joint Surg (Am Vol). 2014;96(5), e39.View ArticleGoogle Scholar
  36. Vioreanu MH, O’Daly BJ, Shelly MJ, Devitt BM, O’Byrne JM. Design, implementation and prospective evaluation of a new interactive musculoskeletal module for medical students in Ireland. Ir J Med Sci. 2013;182(2):191–9.View ArticleGoogle Scholar
  37. Rego P, Peterson R, Callaway L, Ward M, O’Brien C, Donald K. Using a structured clinical coaching program to improve clinical skills training and assessment, as well as teachers’ and students’ satisfaction. Med Teach. 2009;31(12):e586–95.View ArticleGoogle Scholar
  38. Burke J, Fayaz S, Graham K, Matthew R, Field M. Peer-assisted learning in the acquisition of clinical skills: a supplementary approach to musculoskeletal system training. Med Teach. 2007;29(6):577–82.View ArticleGoogle Scholar
  39. SCLO: Swiss Catalogue of Learning Objectives for Undergraduate Medical Training. 2008. http://sclo.smifk.ch. Accessed date 10 Sept. 2014).
  40. Kantonale Ethikkommission KEK Bern, www.kek-bern.ch. Accessed date 11 May 2015.
  41. Dornan T, Boshuizen H, King N, Scherpbier A. Experience-based learning: a model linking the processes and outcomes of medical students’ workplace learning. Med Educ. 2007;41(1):84–91.View ArticleGoogle Scholar
  42. Khan KZ, Ramachandran S, Gaunt K, Pushkar P. The Objective Structured Clinical Examination (OSCE): AMEE Guide No. 81. Part I: an historical and theoretical perspective. Med Teach. 2013;35(9):e1437–46.View ArticleGoogle Scholar
  43. Khan KZ, Gaunt K, Ramachandran S, Pushkar P. The Objective Structured Clinical Examination (OSCE): AMEE Guide No. 81. Part II: organisation & administration. Med Teach. 2013;35(9):e1447–63.View ArticleGoogle Scholar
  44. Bloomfield L, Harris P, Hughes C. What do students want? The types of learning activities preferred by final year medical students. Med Educ. 2003;37(2):110–8.View ArticleGoogle Scholar
  45. Remmen R, Denekens J, Scherpbier A, Hermann I, van der Vleuten C, Royen PV, et al. An evaluation study of the didactic quality of clerkships. Med Educ. 2000;34(6):460–4.View ArticleGoogle Scholar
  46. Dolmans DH, Wolfhagen IH, Heineman E, Scherpbier AJ. Factors adversely affecting student learning in the clinical learning environment: a student perspective. Education Health. 2008;21(3):32.Google Scholar
  47. Young L, Orlandi A, Galichet B, Heussler H. Effective teaching and learning on the wards: easier said than done? Med Educ. 2009;43(8):808–17.View ArticleGoogle Scholar
  48. Vivekananda-Schmidt P, Lewis M, Hassell AB, Coady D, Walker D, Kay L, et al. Validation of MSAT: an instrument to measure medical students’ self-assessed confidence in musculoskeletal examination skills. Med Educ. 2007;41(4):402–10.View ArticleGoogle Scholar
  49. Torre DM, Simpson D, Sebastian JL, Elnicki DM. Learning/feedback activities and high-quality teaching: perceptions of third-year medical students during an inpatient rotation. Acad Med. 2005;80(10):950–4.View ArticleGoogle Scholar
  50. Murray E, Alderman P, Coppola W, Grol R, Bouhuijs P, van der Vleuten C. What do students actually do on an internal medicine clerkship? A log diary study. Med Educ. 2001;35(12):1101–7.View ArticleGoogle Scholar
  51. van Hell EA, Kuks JB, Cohen-Schotanus J. Time spent on clerkship activities by students in relation to their perceptions of learning environment quality. Med Educ. 2009;43(7):674–9.View ArticleGoogle Scholar
  52. Remmen R, Derese A, Scherpbier A, Denekens J, Hermann I, van der Vleuten C, et al. Can medical schools rely on clerkships to train students in basic clinical skills? Med Educ. 1999;33(8):600–5.View ArticleGoogle Scholar
  53. Duvivier R, Stalmeijer R, van Dalen J, van der Vleuten C, Scherpbier A. Influence of the workplace on learning physical examination skills. BMC Med Educ. 2014;14:61.View ArticleGoogle Scholar
  54. Smith MD, Walker JG, Schultz D, Ash J, Roberts-Thomson P, Shanahan EM, et al. Teaching clinical skills in musculoskeletal medicine: the use of structured clinical instruction modules. J Rheumatol. 2002;29(4):813–7.Google Scholar
  55. Haq I, Fuller J, Dacre J. The use of patient partners with back pain to teach undergraduate medical students. Rheumatology. 2006;45(4):430–4.View ArticleGoogle Scholar
  56. Hendry GD, Schrieber L, Bryce D. Patients teach students: partners in arthritis education. Med Educ. 1999;33(9):674–7.View ArticleGoogle Scholar
  57. Smith MD, Henry-Edwards S, Shanahan EM, Ahern MJ. Evaluation of patient partners in the teaching of the musculoskeletal examination. J Rheumatol. 2000;27(6):1533–7.Google Scholar
  58. Schrieber L, Hendry GD, Hunter D. Musculoskeletal examination teaching in rheumatoid arthritis education: trained patient educators compared to nonspecialist doctors. J Rheumatol. 2000;27(6):1531–2.Google Scholar
  59. Bideau M, Guerne PA, Bianchi MP, Huber P. Benefits of a programme taking advantage of patient-instructors to teach and assess musculoskeletal skills in medical students. Ann Rheum Dis. 2006;65(12):1626–30.View ArticleGoogle Scholar
  60. Raj N, Badcock LJ, Brown GA, Deighton CM, O’Reilly SC. Undergraduate musculoskeletal examination teaching by trained patient educators--a comparison with doctor-led teaching. Rheumatology. 2006;45(11):1404–8.View ArticleGoogle Scholar
  61. Barley GE, Fisher J, Dwinnell B, White K. Teaching foundational physical examination skills: study results comparing lay teaching associates and physician instructors. Acad Med. 2006;81(10 Suppl):S95–7.View ArticleGoogle Scholar
  62. Gadsby K, Deighton C. The perceptions of final year medical students in rheumatology workshops when delivered by a consultant and a nurse clinical educator. Rheumatology. 2005;44(8):1047–50.View ArticleGoogle Scholar
  63. McGaghie WC, Kowlowitz V, Renner BR, Sauter SV, Hoole AJ, Schuch CP, et al. A randomized trial of physicians and physical therapists as instructors of the musculoskeletal examination. J Rheumatol. 1993;20(6):1027–32.Google Scholar
  64. Oswald AE, Wiseman J, Bell MJ, Snell L. Musculoskeletal examination teaching by patients versus physicians: how are they different? Neither better nor worse, but complementary. Med Teach. 2011;33(5):e227–35.View ArticleGoogle Scholar
  65. Oswald AE, Bell MJ, Wiseman J, Snell L. The impact of trained patient educators on musculoskeletal clinical skills attainment in pre-clerkship medical students. BMC Med Educ. 2011;11:65.View ArticleGoogle Scholar
  66. Field M, Burke JM, McAllister D, Lloyd DM. Peer-assisted learning: a novel approach to clinical skills learning for medical students. Med Educ. 2007;41(4):411–8.View ArticleGoogle Scholar
  67. Perry ME, Burke JM, Friel L, Field M. Can training in musculoskeletal examination skills be effectively delivered by undergraduate students as part of the standard curriculum? Rheumatology. 2010;49(9):1756–61.View ArticleGoogle Scholar
  68. Norcini J, Burch V. Workplace-based assessment as an educational tool: AMEE Guide No. 31. Med Teach. 2007;29(9):855–71.View ArticleGoogle Scholar
  69. Oliver CM, Hunter SA, Ikeda T, Galletly DC. Junior doctor skill in the art of physical examination: a retrospective study of the medical admission note over four decades. BMJ Open. 2013. doi:10.1136/bmjopen-2012-002257.Google Scholar
  70. Sirisena D, Begum H, Selvarajah M, Chakravarty K. Musculoskeletal examination--an ignored aspect. Why are we still failing the patients? Clin Rheumatol. 2011;30(3):403–7.View ArticleGoogle Scholar
  71. Hodges B, Regehr G, McNaughton N, Tiberius R, Hanson M. OSCE checklists do not capture increasing levels of expertise. Acad Med. 1999;74(10):1129–34.View ArticleGoogle Scholar

Copyright

© Perrig et al. 2016

Advertisement