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Abstract

Background: The ability to compose a concise summary statement about a patient is a good indicator for the
clinical reasoning abilities of healthcare students. To assess such summary statements manually a rubric based on
five categories - use of semantic qualifiers, narrowing, transformation, accuracy, and global rating has been
published. Our aim was to explore whether computer-based methods can be applied to automatically assess
summary statements composed by learners in virtual patient scenarios based on the available rubric in real-time to
serve as a basis for immediate feedback to learners.

Methods: We randomly selected 125 summary statements in German and English composed by learners in five
different virtual patient scenarios. Then we manually rated these statements based on the rubric plus an additional
category for the use of the virtual patients’ name. We implemented a natural language processing approach in
combination with our own algorithm to automatically assess 125 randomly selected summary statements and
compared the results of the manual and automatic rating in each category.

Results: We found a moderate agreement of the manual and automatic rating in most of the categories. However,
some further analysis and development is needed, especially for a more reliable assessment of the factual accuracy
and the identification of patient names in the German statements.

Conclusions: Despite some areas of improvement we believe that our results justify a careful display of the
computer-calculated assessment scores as feedback to the learners. It will be important to emphasize that the
rating is an approximation and give learners the possibility to complain about supposedly incorrect assessments,
which will also help us to further improve the rating algorithms.
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Background
Clinical reasoning is a complex set of skills healthcare
students have to acquire during their education. Apart
from face-to-face teaching scenarios, such as bedside
teaching, clinical reasoning can be trained with web-
based virtual patients (VPs) [1]. VPs are scalable, allow

for deliberate practice, and provide a safe environment
in which neither students nor patients are harmed.
CASUS [2] is a virtual patient software, that supports

clinical reasoning training in multiple ways - with a var-
iety of question types, a specific clinical reasoning tool
[3], and the composition of a summary statement by the
learners.
Summary statements are short presentations of a pa-

tient of usually one to three sentences length. The ability
to present a patient in such a concise way is a good
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indicator for clinical reasoning skills, because the student
has to summarize and synthesize a patient’s information
[4]. In CASUS, learners currently get feedback in form
of a static expert statement after having submitted their
own statement, but the statements are not yet assessed
in an automatic way, thus, no dynamic and individual
feedback is provided.
Smith et al. have developed a rubric to assess the qual-

ity of such summary statements and provide structured
feedback to learners [5]. Their rubric includes five com-
ponents - factual accuracy, appropriate narrowing of the
differential diagnosis, transformation of information, use
of semantic qualifiers (SQ), and a global rating. Each
component can be rated on a two- or three-point scale.
With this detailed assessment considering different as-
pects the rubric can help learners to monitor and assess
their progress. However, this approach is based on hu-
man raters; for an implementation for real-time rating
and feedback in VPs, the summary statements have to
be analyzed automatically.
In the recent years natural language processing (NLP)

and machine learning (ML) tools became more access-
ible as services and have also been applied in medical
education [6]. Such techniques aim to enable computers
to parse and interpret spoken or written human lan-
guage as humans would do [6].; for example, Denny at
al. describe the use of NLP to identify competencies
from students’ clinical notes [7] and Spickard et al. ex-
tracted and cataloged concepts from students’ clinical
notes to track their progress [8].
The aim of our project was to combine the rubric by

Smith et al. with NLP approaches to test whether an
automatic real-time assessment of summary statements
can serve as a basis for providing structured qualitative
feedback to learners without the need of manually train-
ing such a system on a VP-based level.

Implementation
From January 2017 to July 2019 100 virtual patients in
German and English were provided in two open-access
courses in CASUS to healthcare students world-wide as
a voluntary and self-directed training opportunity [2].
Each expert-reviewed VP included a clinical reasoning

tool that was developed to specifically support the clin-
ical reasoning skills acquisition with a concept mapping
approach [3]. Additionally, in each VP learners were
prompted to compose a short statement summarizing
the patients history; a brief introductory video explained
the purpose and main components of such a statement
[9]. Feedback was provided in form of an exemplary
summary statement composed by the VP author. Over-
all, during this period of data collection, learners created
1505 summary statements in German and English.
For the purpose of this project we selected five VPs

covering a broad range of key symptoms, such as fever,
abdominal pain, or dyspnea with acute or chronic
courses of disease and covering different final diagnoses,
such as asthma, colitis ulcerative, or pneumonia. From
these five virtual patients we randomly selected 125
summary statements in both languages and collected
them in an excel file. Two healthcare professionals (IK,
IH) independently rated the 125 statements based on
the assessment rubric published by Smith et al. (Table 1).
Additionally, to emphasize a patient-centered approach,
we included a new category to assess whether the patient
was addressed with his or her name in the statements.
After studying and discussing the assessment rubric
(Table 1) the two healthcare professionals independently
rated 25 statements followed by a discussion about any
divergent codings. After reaching consensus in all cat-
egories the remaining 100 statements were coded. Dis-
agreements among the raters were solved in a personal
discussion and consensus was reached in all cases.
Based on a focused internet research we evaluated po-

tential NLP tools and software solutions, that could sup-
port the analysis of summary statements by creating a
semantic structure of the written texts. We decided to
try the python framework spaCy [10] because it is

� applicable for summary statements in English,
German, and potentially other languages

� potentially applicable for real-time assessment via an
API

� open-source.

For optimal results, we followed a two-step approach
combining available metadata of the VP for each

Table 1 Rating rubric suggested by Smith et al. (0 = None, 1 = Some, 2 = Appropriate) [5] and additional category “patient name”

Category Scoring Description

Use of semantic qualifiers 0, 1, or 2 Use of qualitative terms (e.g. “acute”, “unilateral”, “severe”)

Appropriate narrowing of differential diagnosis 0, 1, or 2 Including key features to narrow the differential diagnosis

Transformation of information 0, 1, or 2 Use of medical terminology (e.g. “Fever” instead of Temperature: 39.4 °C”

Factual accuracy 0 (No), 1(Yes) Only accurate information included

Patient name 0 (No), 1 (Yes) The (virtual) patient is addressed by name and not called “the patient”.

Global rating 0, 1, or 2 Overall rating
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category and the controlled vocabulary thesaurus MeSH
((Medical Subject Headings) and an analysis with spaCy.
First, we used the spaCy tree to assess the five compo-

nents of the rubric and the additional patient category
(see Table 2).
Second, we created with spaCy a tree of entities, sen-

tences, and tokens of the summary statements.
For both steps we applied general rules and no VP-

specific algorithms to guarantee the applicability of our
approach for a broad variety of VPs.
For real-time feedback the time needed to calculate

the rating is an important factor, thus, we optimized the
algorithm in terms if performance and recorded the time
needed for the longest summary statement.
For comparing the manual and the automatic rating

we calculated Cohen’s kappa using SPSS version 26, with
values of 0.01 to 0.20 considered none/slight, 0.21 to
0.40 fair, 0.41 to 0.60 moderate, 0.61 to 0.80 substantial,
and 0.81 to 1.00 almost perfect agreement.
We received ethical approval from the Ethical Com-

mittee of the University of Munich for the anonymous
collection and analysis of summary statements.

Results
The comparison of manual and computer-based rating
in the six categories is shown in Table 3. The detailed
results for 50 exemplary summary statement can be
found in Additional file 1.
Overall, Table 3 shows a substantial agreement

(κ > = .61) between the manual and the automatic
rating in the category “patient name”, a fair agree-
ment for the category “factual accuracy” and moder-
ate agreement (κ > =.41) for all other categories.

Complete mismatches with a rating distance of 2 can
be seen in two categories (appropriate narrowing and
transformation) each showing one manual rating with
a 2 and an automatic rating with 0.
When looking into the results of the analysis of Ger-

man and English summary statements, we detected some
issues in the “patient name” category. The NLP identi-
fied all 35 persons in the English statements, with two
false hits, but for German statements none of the 10 pa-
tient names were identified.
The following shows an example of a summary state-

ment for a VP with tuberculosis: “67 year old patient, pre-
sents with a cough that lasted 3 months. Has a smoking
history. Has experienced weight loss and loss of appetite.
Green sputum. Earlier diagnosed with hypertension,
treated in China.”
The NLP tree of this statement is shown in Fig. 1.
Our algorithm was then able to identify and classify

the following terms:
“67 year old (date) patient, presents with a cough

(finding) that lasted 3 months (duration). Has a smoking
(finding) history. Has experienced weight loss (finding)
and loss of appetite (finding). Green sputum (anatomical
term). Earlier diagnosed with hypertension (diagnosis,
hyper = SQ), treated in China (country).”
This leads to the following calculated scores:

(1) SQ = 0 (1 SQ identified)
(2) Appropriate narrowing = 1 (3 matching terms with

expert statement or VP metadata)
(3) Transformation = 1 (2 terms indicating a

transformation)
(4) Accuracy = 1 (no incorrect information identified)

Table 2 Computer-based calculation of the scores in the six categories

Category Method Score formula

Use of semantic
qualifiers (SQ)

Identification of semantic qualifiers in the statements based on the list
provided by Connell et al. [11] and application of rules to compare
results, occurrences and the semantic context with the NLP tree.

< 2 SQ: Score = 0
> = 2 and < =4 SQ: Score = 1
> 4 SQ: Score = 2

Appropriate narrowing
of differential
diagnosis

Identification of findings, differential diagnoses, and anatomical terms
based on an adapted MeSH thesaurus and comparison of the result with
analysis of the expert statement and VP metadata.

(found terms of expert - terms of learner
matching with expert -) / found terms of expert:
> 0.75: Score = 0
<= 0.75 and > = 0.25: Score = 1
< 0.25: Score = 2

Transformation of
information

Identification of transformed terms and non-transformed terms based on
a list of SI units and the MeSH thesaurus and comparison with trans-
formed terms by expert and overall length of the statement.

(transformed terms - non-transformed terms /2)/
(transformed terms of expert + text length
factor)
< 0.16: Score = 0
> = 0.16 and < = 0.7: Score = 1
> 0.7: Score = 2

Factual accuracy Identification of contradicting use of SQ in the learner and expert
statement

contradicting information found: score = 0, else
score = 1.

Patient name used Identification of a person token in the NLP tree person identified: score = 1, else score = 0.

Global rating Sum of the five categories Sum <=2: Score = 0
Sum > 2 and < =5: Score = 1
Sum > 5: Score = 2
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(5) Patient name = 0 (no patient name identified)
(6) Global rating = 1 (sum = 5)

The exemplary statement was similarly assessed by the
rater, only the transformation was rated with 0 instead
of 1.
The measured time for the summary statement ana-

lysis was on average 1.3 s, with a maximum of 5.8 s for
the longest statement.

Discussion
The aim of our project was to test whether an automatic
rating of summary statements based on the rubric pro-
vided by Smith et al. can be used for providing real-time
feedback to learners by applying general rules without
having to train a system specifically for a VP. Overall, we
believe that the results of our combined approach for
the six components are promising showing a moderate
agreement between the manual and automatic agree-
ment for most of the categories and only very few
complete mismatches with a rating distance of 2.
For some components, we identified difficulties in

achieving more reliable results: The main challenge in
the category “patient name” were German statements in
which we could not identify names or persons at all due
to the limitations of the NLP model. This could be
solved by providing the name of the VP as metadata and
compare it directly with the statement.
With only a slight agreement (κ = .366) especially the

category Factual Accuracy requires further refinement.
From our 125 randomly selected summary statements

Table 3 Comparison of manual (columns) and automatic (rows)
rating of summary statements in the six categories and Cohen’s
kappa as measure of agreement between the manual and the
automatic rating

Category Automatic
trating

Manual rating Congruent
rating0 1 2

Semantic qualifiers 0 39 15 0 75.2%, κ = .557

1 5 51 9

2 0 2 4

Appropriate narrowing 0 21 9 1 81.6%, κ = .458

1 8 68 13

2 0 2 3

Transformation 0 47 14 1 69.6%, κ = .484

1 11 35 5

2 0 6 5

Factual accuracy 0 5 2 – 93.6%, κ = .366

1 12 106 –

Patient name 0 78 10 – 90.4, κ = .783

1 2 35 –

Global rating 0 24 4 0 80.0%, κ = .582

1 8 72 5

2 0 8 4

Fig. 1 NLP tree of an exemplary summary statement indicating the type of entity, such as noun, verb, or adjective and the type of dependencies
between entities. For example, “3” is a numeric modifier (nummod) for “months”. The list of annotations can be found
at https://spacy.io/api/annotation
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only 17 were rated as not accurate in the manual assess-
ment and only five of these were then correctly identi-
fied with our algorithm. This low number and the great
variety of potential errors in statements makes it difficult
to achieve a more reliable detection of non-accurate
statements. To further improve our algorithm to detect
errors, we will have to specifically collect and analyze
more non-accurate statements. Despite the importance
of accuracy for the rating of a statement, it seems a diffi-
cult category to rate, for which also in the study by
Smith et al. interrater reliability was lowest [5]. Their
plan for improvement was the further development of
the rubric from a binary to a multiple-option category.
Such a specification might also help to further develop
our algorithm to categorize and detect potential error
sources.
In contrast to the rating rubric by Smith et al. we cal-

culated a more specific ratio for all categories except pa-
tient name, factual accuracy, and global rating, which
was then translated by thresholds into the 0,1,2 - rubric.
In doing so, we lost some information, that could give
learners a better and more accurate understanding on
their performance.
The analysis of the summary statement is a complex

task, requiring an average of 1.3 s per statement, with 58
of the longer statements requiring more than 1 sec,
which is according to Nielsen the limit for an uninter-
rupted flow of thought [12]. Hence, displaying the
analysis results as real-time feedback to the learners in
their learning analytics dashboard will require a pre-
calculation in the background guaranteeing an uninter-
rupted user experience.

Limitations
For our project, we randomly selected 125 statements
from five VPs, which is quite a low number compared to
the overall number of summary statements already col-
lected and the number of VPs available in the CASUS
system. When selecting the VPs for the project our aim
was to cover a broad spectrum of findings and differen-
tial diagnoses, but we cannot exclude that for specific
VPs the algorithm might return less accurate ratings.
More testing with a higher number of summary state-
ments of the five VPs and additional VPs has to be im-
plemented to further validate our results. Finally, we
cannot exclude that due to a volunteer bias the summary
statements are more homogenous than without such a
bias. However, assuming that volunteer learners tend to
be more motivated and engaged [13], but also having
only a few statements with a global rating of 2 (see Table
3) we believe that it is unlikely that such a bias had an
influence on our results. Unfortunately, we do not have
similar studies to compare our results to,

Conclusions
Overall, most of the categories show a moderate agree-
ment between the manual and the automatic rating,
which we think is a justifiable starting point for a careful
feedback to the learners about their performance in
summary statement composition as part of the learning
analytics dashboard. However, we would refrain from
displaying the absolute rubric scores (0,1, or 2), but the
underlying ratio in each category. It will also be import-
ant to emphasize the possibility of false interpretations
of the automatic rating and give learners the chance to
provide feedback concerning the assessment of their
statement. This feedback will also form an important
step in further improving our algorithm.
Apart from analyzing summary statements, our ap-

proach might also be a first step for analyzing other texts
composed by healthcare students, such as e-portfolio
entries.
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and the time of the automatic assessments.

Abbreviations
NLP: Natural language processing; SQ: Semantic qualifiers; VPs: Virtual
patients

Acknowledgements
We would like to thank the learners who worked in CASUS with the virtual
patients and provided the summary statements that formed the basis for
this project.

Authors’ contributions
IK and IH manually rated the data. MA and IH developed the software to
automatically rate the data. IH drafted the manuscript and IK and MA
contributed significantly. All authors read and approved the final manuscript.

Funding
The virtual patients were part of a project that received funding from the
European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 654857. The project is part
of the DID-ACT project, which is co-funded by the Erasmus+ Programme of
the European Union (612454-EPP-1-2019-1-DE-EPPKA2-KA). Open Access
funding enabled and organized by Projekt DEAL and publication funded by
the DID-ACT project.

Hege et al. BMC Medical Education          (2020) 20:366 Page 5 of 6

https://github.com/clinReasonTool
https://doi.org/10.1186/s12909-020-02297-w
https://doi.org/10.1186/s12909-020-02297-w


Availability of data and materials
The dataset with the 125 summary statements in English and German
including the results of the manual and automatic rating can be obtained
from the authors, an exemplary dataset of 50 summary statements in English
is included in this article as Additional file 1.

Ethics approval and consent to participate
We obtained ethical approval from the ethical committee at Ludwig-
Maximilians Universität Munich, Germany (reference number: 260–15) for an
anonymous analysis of the data. Consent to participate is not applicable. The
virtual patients provided to the learners were fictional and not based on any
real persons.

Consent for publication
Not applicable.

Competing interests
MA is CEO of the non-for-profit company Instruct, which develops and dis-
tributes the VP system CASUS, which was used to collect the summary state-
ments. IH is a member of the editorial board of BMC Medical Education.
Otherwise, the authors declare that they have no conflict of interests.

Author details
1Medical Education Sciences, University of Augsburg, Augsburg, Germany.
2Institute for Medical Education, Klinikum der Ludwig-Maximilians-Universität
München, Pettenkoferstr. 8a, 80336 Munich, Germany. 3Department of
Anaesthesiology, Klinikum der Ludwig-Maximilians-Universität München,
Munich, Germany. 4Instruct gGmbH, Kapuzinerstr.5, 80337 Munich, Germany.

Received: 28 February 2020 Accepted: 9 October 2020

References
1. Cook DA, Triola MM. Virtual patients: a critical literature review and

proposed next steps. Med Educ. 2009;43(4):303–11.
2. CASUS virtual patient system. Available from http://crt.casus.net Accessed 12

Feb 2020.
3. Hege I, Kononowicz AA, Adler M. A clinical reasoning tool for virtual

patients: design-based research study. JMIR Med Educ. 2017;3(2):e21.
4. Bowen JL. Educational strategies to promote clinical diagnostic reasoning. N

Engl J Med. 2006;355:2217–25.
5. Smith S, Kogan JR, Berman NB, Dell MS, Brock DM, Robins LS. The

Development and Preliminary Validation of a Rubric to Assess Medical
Students’ Written Summary Statements in Virtual Patient Cases. Acad Med.
2016;91(1):94–100.

6. Chary M, Parikh S, Manini A, Boyer E, Radeous M. A Review of Natural
Language Processing in Medical Education. Western J Emerg Med. 2018;
20(1):78–86.

7. Denny JC, Spickard A, Speltz PJ, Porier R, Rosenstiel DE, Powers JS. Using
natural language processing to provide personalized learning opportunities
from trainee clinical notes. J Biomed Inform. 2015;56:292–9.

8. Spickard A, Ridinger H, Wrenn J, O’brien N, Shpigel A, Wolf M, et al.
Automatic scoring of medical students’ clinical notes to monitor learning in
the workplace. Med Teach. 2014;36(1):68–72.

9. Video about a summary statement composition. https://www.youtube.com/
watch?v=zvlNSU2ys7k. Accessed 12 Feb 2020.

10. spaCy natural language processing. https://spacy.io/ Accessed 12 Feb 2020.
11. Connell KJ, Bordage G, Chang RW. Assessing clinicians’ quality of thinking

and semantic competence: a training manual. Chicago: University of Illinois
at Chicago, Northwestern University Medical School, Chicago; 1998.

12. Nielsen Norman Group. Response Times: The 3 important limits. https://
www.nngroup.com/articles/response-times-3-important-limits/ Accessed
12 Feb 2020.

13. Callahan CA, Hojat M, Gonnella JS. Volunteer bias in medical education
research: an empirical study of over three decades of longitudinal data.
Med Educ. 2007;41(8):746–53.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Hege et al. BMC Medical Education          (2020) 20:366 Page 6 of 6

http://crt.casus.net
https://www.youtube.com/watch?v=zvlNSU2ys7k
https://www.youtube.com/watch?v=zvlNSU2ys7k
https://spacy.io/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Implementation
	Results
	Discussion
	Limitations

	Conclusions
	Availability and requirements
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

