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Abstract

Background: The validity of selection tests is underestimated if it is determined by simply calculating the predictor-
outcome correlation found in the admitted group. This correlation is usually attenuated by two factors: (1) the
combination of selection variables which can compensate for each other and (2) range restriction in predictor and
outcome due to the absence of outcome measures for rejected applicants.

Methods: Here we demonstrate the logic of these artifacts in a situation typical for student selection tests and
compare four different methods for their correction: two formulas for the correction of direct and indirect range
restriction, expectation maximization algorithm (EM) and multiple imputation by chained equations (MICE). First we
show with simulated data how a realistic estimation of predictive validity could be achieved; second we apply the
same methods to empirical data from one medical school.

Results: The results of the four methods are very similar except for the direct range restriction formula which
underestimated validity.

Conclusion: For practical purposes Thorndike’s case C formula is a relatively straightforward solution to the range
restriction problem, provided distributional assumptions are met. With EM and MICE more precision is obtained
when distributional requirements are not met, but access to a sophisticated statistical package such as R is needed.
The use of true score correlation has its own problems and does not seem to provide a better correction than
other methods.
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The problem
If the predictive validity of an admission test is low, its
employment is hard to justify. Therefore a trustworthy
estimation of predictive validity is needed. The predict-
ive validity of a test is defined as the correlation of its
scores with an outcome criterion. However in many test
situations this correlation is not directly calculable. Here
we consider two complications which lead to an under-
estimation of predictive validity:
1. The selection decision is based on multiple criteria,

which can compensate for each other. This generates a
negative correlation between predictors which attenuates
the predictor-outcome correlation for each of them.

2. As outcome data are not available for rejected appli-
cants the range of predictors as well as of the criterion
variable is restricted and this attenuates the predictor-
outcome-correlation.
Both problems are often ignored or treated superfi-

cially. This seems to reflect a lack of communication
between psychometric statisticians and applied re-
searchers, who may feel deterred by the multitude of
methods offered and their seemingly inscrutable subtle-
ties [1]. In this article we will describe the problems of
calculating predictive validity in an illustrative scenario
using artificial data, then demonstrate methods for their
solution, and finally apply these methods to real data
from an entrance test for medical school which is used
in combination with high school GPA (hGPA) in
Germany. We hope that applied researchers will find
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this account helpful for their understanding of artifact
correction in validity estimation and finally adopt one of
the proposed solutions in their own research.

Illustrative scenario
Let’s imagine a situation typical for student selection:
Two selection variables X1 (for example an entrance
test) and X2 (for example hGPA) are combined into a se-
lection score Z = X1 + X2. Applicants are admitted ac-
cording to their rank order on Z. In the following, we
present artificial data generated to illustrate the scenario.
We use the software R with the package MASS [2] to
draw data points for X1, X2, and Y from a standard nor-
mal random distribution (mean = 0, sd = 1) restricted to
yield the following correlations: ρyx1∣a ¼ :60, ρyx2∣a ¼ :20,

and ρx1x2∣a ¼ :00, (N = 1000 applicants).
Following the terminology of McManus [3] the total

sample of all test takers is called “applicants”, and the se-
lected subgroup (here 20% of applicants) is called “in-
cumbents” because this group usually is entitled to
something, e.g. a study place. In this article we denote
applicants with a, incumbents with i. Examples: ryx1∣a is
the correlation between the outcome Y (study success)
and the predictor X1 (test) in the applicants, ryx1•2∣i is the
correlation between the outcome Y and the predictor X1

in the incumbents after the linear effect of X2 (hGPA)
has been removed from X1. X1 is the predictor of inter-
est - we want to know how well the test performs in pre-
dicting the outcome Y independent of X2. While X1 and
X2 are measured in all applicants, the outcome variable
Y is only measured in the incumbents. Thus, ryx1 is only
defined in the incumbents ( ryx1∣i ), as we do not have

data about the outcome from the rejected applicants.
Still we want to know the relationship between X1 and Y
in the unrestricted sample (ryx1∣a).

Compensatory selection
Here we demonstrate why compensatory selection is a
factor that attenuates the estimation of predictive valid-
ity. If two measures are combined into a sum that is
used for the selection decision, e.g. a test score for nat-
ural science knowledge (X1), and high school grade point
average (hGPA) (X2) a low test score might be compen-
sated by a high hGPA and vice versa. Only if both mea-
sures are low an applicant will be rejected which creates
a negative correlation rx1x2∣i in the incumbents (Fig. 1).
The negative correlation has repercussions for predict-

ive validity: the negative correlation rx1x2∣i generated by
the selection procedure diminishes the correlations of
each of the two predictors with the outcome Y - a sup-
pressor effect occurs. A suppressor variable is a variable,
which increases the predictive validity of another vari-
able (or a set of variables) by its inclusion in a regression
equation. It improves predictability by purging some ir-
relevant variance from other predictors [4].
Reciprocal suppression is the case we are concerned

with: Two negatively correlated predictors act as suppres-
sors for each other. Reciprocal supression has been thor-
oughly analyzed by Lutz [5] and Conger [6]. In our case
the origin of the negative correlation is clear: It is the
compensatory selection rule that has eliminated all appli-
cants with low values in both variables from the sample.
The correlation of X1 and X2 in the unrestricted sample of
applicants is almost zero ( rx1x2∣a ¼ 0:01 ), but in the

Fig. 1 a Scattergram of X1 and X2. 20% of 1000 applicants are selected by the sum of X1 and X2; the circular cloud representing all
applicants is divided by a diagonal line that separates the top right area from the bottom left area. b This generates a negative
correlation between X1 and X2 in the incumbents rx1x2∣i ¼ −0:71ð Þ. Residuals of X1 after the linear effect of X2 is removed. They are
expressed as deviations from the regression line: The residuum of X1 when the influence of X2 is removed is the observed X1 value
minus the expected value of the regression X1 on X2
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restricted sample of incumbents it is negative (rx1x2∣i ¼ −
0:71) because whenever the value of one variable is low
the value of the other variable must be moderately high at
least - otherwise the applicant would have been rejected.
This has implications for the relation of both predictors
X1 and X2 to the outcome Y within the incumbents.
An applicant with a low hGPA (X2) can still be ac-

cepted if her entrance test result (X1) is superior. A low
hGPA would predict less study success (Y), whereas a
high test results would predict more study success. Thus
the negative relation between the test score and hGPA
would mask the predictive power of the test. This also
goes vice versa, if entrance test and hGPA change places.
Multiple regression removes the effect of reciprocal sup-
pression as it shows the independent contribution of
each predictor after controlling for all other predictors
(similar to the calculation of the residuals in Fig. 1). The
beta coefficients of the two predictors exceed their first
order correlations with the criterion (Fig. 2). However
beta coefficients are not correlations, but weights which
determine how much Y is expected to respond if X1

changes one unit of a standard deviation. This is espe-
cially helpful if we want to compare the influence of
multiple variables that possess different measurement
units [7]. As we need to assess the validity of X1 as a
unique predictor the semipartial correlation is more suit-
able because it represents the correlation of the residuals
of X1 after the linear effect of X2 has been taken out [8].
The semipartial coefficient has the same numerator as
the standardized regression coefficient β but a slightly

different denominator,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−r2x1x2

q
instead of the square of

this term, 1−r2x1x2 . While the semipartial coefficient is
bound between −1 and +1, the standardized regression
coefficient is not. The semipartial correlations ryx1•2∣i and
ryx1•2∣i not only correct for the compensatory selection

procedure but for any effect X2 may have on X1 and vice
versa. So our first step to the correction of the empirical
predictor-outcome correlation is to exclude the effect of
reciprocal suppression by computing the semipartial cor-
relation. Instead of ryx1∣i ¼ :37 we obtain ryx1•2∣i¼:40 as
an estimation of predictive validity corrected for com-
pensatory selection. This still deviates from the true cor-
relation which we know because we work with artificial
data: ryx1∣a ¼ 0:57: The difference between ryx1•2∣i¼:40

and ryx1∣a ¼ 0:57 must be attributed to the effect of
range restriction.

Range restriction
Correlations derived from the subgroup of selected ap-
plicants are often simply reported as indicators of pre-
dictive validity without correcting for the effects of
multiple selection variables and range restriction [9].
This error has been observed more than half a century
before: Cyril Burt exposed the “time-honoured fallacy”,
of, “judging the efficiency of [an] examination as a mean
of selection by stating its efficiency as a means of pre-
dicting the order of merit within the selected group”,
[10] p. 2. This is an instance of the fallacy of compos-
ition, which arises whenever one infers that something is
true of the whole from the fact that it is true of some
part of the whole, in this case the correlation coefficient
for the whole group of applicants taken erroneously as
identical to the correlation coefficient for the admitted
applicants. McManus deplores the widespread tolerance
for this fallacy and the consequential misinterpretation
of findings: “Even in prestigious journals a naïve inter-
pretation can be made that selection measures, such as
A-level grades, are actually of little value” [3], p. 4.
Many studies in the field of predictive validity do not cor-

rect for range restriction. For example a recent article on

Fig. 2 Relations between X1, X2, and Y in applicants and incumbents for 20% selection rate. ryx1 : first order correlation, βyx1 : beta coefficient, ryx1•2 :
semipartial correlation
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the validity of the UKCAT reports uncorrected predictor-
outcome correlations as validity coefficients [11]. Such coef-
ficients are typically very low and lead to disappointing con-
clusions about the predictive validity of a test or attempts
to shrug off such conclusions. As attenuation due to range
restriction is inversely associated with the selection rate its
omission is particularly detrimental in highly selective ad-
mission procedures as in selection for medical school. Arti-
ficially low validity coefficients are not in the interest of
most research teams, so why does this happen? Perhaps
some researchers do not know that range restriction is a
problem, or they know, but feel uneasy about remedial ac-
tion because it feels like arbitrarily jacking up a correlation
coefficient or “armchair magnification” [10], p. 13. However
corrected correlations are less biased than uncorrected cor-
relations, even when assumptions are not met fully [12, 13].
Correction for range restriction is recommended by the So-
ciety for Industrial and Organizational Psychology as a mat-
ter of routine [14].
How can we estimate the predictive validity for all appli-

cants if we have no outcome data for a large part of the
sample? A multitude of methods have been developed to
achieve this feat in a variety of testing situations [1]. The
menu of suitable methods comprises multiple correction
formulas using different sets of assumptions as well as
maximum likelihood methods of missing value imputa-
tions such as Bayesian Monte Carlo methods [15–17].
Imagine an ellipsoid of points in two-dimensional

space representing the unknown predictor/outcome cor-
relation in the total sample (Fig. 3a). If the lower part of
the ellipsoid is removed by a selection rule, only the
black points at the right side remain and this cloud cor-
responds to a correlation coefficient much lower than the
one that corresponds to the full ellipsoid (Fig. 3b). The
correlation in the full ellipsoid might be recovered, if its

shape continued from the known black points to the right
to the unknown gray points to the left in an orderly way.

We will consider four methods for correcting the ef-
fect of range restriction:

1. Thorndike’s case A formula for selection with a
single variable

2. Thorndike’s case C formula for indirect selection
3. Expectation Maximization (EM)
4. Multiple imputation if missing values by chained

equations (MICE)

Methods 2–4 handle indirect range restriction, so a
correction for the effect of reciprocal suppression due to
compensatory selection is not necessary. We included
this analysis for clarification, not with the intention to
use the semipartial correlation ryx1•2∣i, albeit with one ex-
ception: In Thorndike’s case A formula we replace X1 by
the residual X1•2, thus ryx1∣i by ryx1•2∣i in order to account
for the suppression caused by X2.
Thorndike’s case A formula [18] is widely used for the

correction of range restriction. This formula estimates the
correlation in the non-restricted sample (non-restricted
correlation), if three coefficients are given: (1) the re-
stricted correlation ryx1∣i (2) the restricted standard devi-
ation SDx1∣i and (3) the non-restricted variance SDx1∣a: It
works in a situation where the performance of a single
predictor X1 is evaluated with an outcome Y.
Thorndike’s case A formula depends on two assump-

tions [19]:

1. Linearity. ba ¼ ryx1∣a
SD2

x1∣a
¼ bi ¼ ryx1∣i

SD2
x1∣i

Fig. 3 The correlation in the full sample of applicants (a) is larger than the correlation in the incumbents (b) due to range restriction: The
variances of X1, X2 and Y are restricted
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2. Homoscedasticity. The error variance e in Y is the
difference between the observed Y value and the
expected value in Y that the regression model
implies. Homoscedasticity requires the error
variance e to be equal for the applicants and the
incumbents:

SD2
e∣a ¼ SD2

y∣a 1−r2yx1∣a
� �

¼ SD2
e∣i ¼ SD2

y∣i 1−r2yx1∣i
� �

Let u ¼ SDx1∣a

SDx1∣i
be the ratio of unrestricted to restricted

standard deviation.
Then the estimation of the unrestricted correlation

ryx1∣a follows unambiguously from assumptions (a) and
(b). After some transformation (see [20]) the result is:
ryx1∣a ¼ uryx1∣iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−r2yx1∣i
þur2yx1∣i

� �r

If the error variance in Y is equal at any level of X1 (ho-
moscedasticity), then it does not matter at which location
on the X-axis the distribution has been cut by the selec-
tion rule as long as the cut is clean and not rendered fuzzy
by the involvement of a third variable such as X2.
In the empirical literature Thorndike’s case A formula

is often used even when selection is also guided by other
variables than X1 (indirect selection). Schmidt and
Hunter [21] demonstrated that this regularly leads to
substantial underestimation of the unrestricted correl-
ation coefficient. We include Case A in our list of cor-
rection methods to demonstrate the magnitude of
underestimation caused by ignoring indirect selection.
2. Thorndike’s case C formula for indirect selection. In

our simulation we have a second selection variable X2,
which is not envisaged by Thorndike’s case A formula. If
multiple variables are used for selection, a compound se-
lection variable Z is formed as a function of X1, X2, …
Xk, e.g. Z = X1+ X2 +… + Xk Thorndike’s case C formula
incorporates such indirect (sometimes called incidental)
selection based on Z, of which the variable of interest,
X1, only is a part [22]:

ryx1∣a ¼
r2yx1∣i þ u−1ð Þryx1∣i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u−1ð Þ r2yx1∣i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u−1ð Þ r2zx1∣i

q

The EM algorithm computes maximum likelihood es-
timates from incomplete data [23]. It fills in missing
values (in our case the missing Y-values of rejected ap-
plicants) with their expectations conditional to a set of
currently assumed parameter values (Expectation-step),
then reestimates these parameters (in our case r̂yx1∣a )
and repeats the process until the estimates exhibit no
important change (Maximization-step). An important
assumption for an unbiased estimation of the EM

algorithm concerns the mechanism that leads to the
missing values. EM as well as MICE as a multiple imput-
ation algorithm require data to be missing at random
(MAR): if a variable is missing, it should not depend on
its value itself but on other variables that could be ob-
served and that are included in the model [24]. In a
study which investigated the reconstruction of validity
coefficients in the context of driving learners, the au-
thors used a convincing research design. For the purpose
of the study, driving learners who failed the theoretical
test were also admitted for the practical driving test.
They could show that EM performed well in predicting
the true validity from an artificial restricted dataset [17].
In our analysis, we are using the EM algorithm as imple-
mented in the package Selection for R [25].
4. The MICE algorithm is the most recent and accord-

ing to its advocates the most accurate approach [15].
The acronym stands for Multiple Imputation by Chained
Equations A multiple imputation analysis consists of
three distinct steps: the imputation phase, the analysis
phase, and the pooling phase. In the imputation phase a
number m of complete datasets are created which con-
tain different plausible estimates of the missing values,
but identical values for the observed data. In the analysis
phase, each complete dataset is analyzed with conven-
tional statistical methods. In the pooling phase the m
parameter estimates are pooled into a single set of par-
ameter estimates by calculating simply the arithmetic
average of the m estimates from the analysis phase. Via
multiple imputations the variance in the variables with
missing values is handled more realistically than in EM.
MICE is a Bayesian type of estimation. In Bayesian sta-
tistics, a prior distribution of parameter values is modi-
fied in the light of new evidence to obtain a posterior
distribution of improved estimates. MICE uses Markov
chain Monte Carlo (MCMC) methods to find the poster-
ior distribution of the parameters. MCMC algorithms
need a large number of steps and therefore are CPU-
intensive. Only with the recent advent of powerful PCs
such methods have become widely available for applied
research. We use the package MICE for R [26].

Study 1: Monte Carlo simulation
The data shown to illustrate the issue of range restriction
were used in a Monte Carlo simulation. We rerun the il-
lustrative scenario (ρyx1∣a ¼ :60, ρyx2∣a ¼ :20, and ρx1x2∣a
¼ :00, N = 1000 applicants) 1000 times and varied the stu-
dent selection ratio (10%, 20% and 30%) that leads to
missing data on Y for the rejected applicants. As we know
ryx1∣a from the data generation process we can test the
precision of methods promising to infer ryx1∣a, from ryx1∣i .
The repetition of the data generation process and the ap-
plication of the four range correction methods allow us to
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determine a point estimate and the variability for each
correction method. The unrestricted correlation estimated
by one of the four methods is denoted by r̂yx1∣a . The dif-
ference between r and r̂ is the error of estimation for the
unrestricted correlation. We use this indicator to assess
the precision of the four correction methods. A value of
0.0 means that the unrestricted correlation coefficient
could be perfectly recovered based on the data of the
incumbents.

Results
The modal value of all correction methods ( r̂yx1∣aÞ , ex-
cept for Thorndike’s case A, is fairly close to the target
value of ryx1∣a (Fig. 4a-c). Table 1 also shows the root
mean square error (RMSE). RMSE is the standard devi-
ation of the prediction error. It shows how close the re-
covered validity coefficients are to the true validity.
Lower values of RMSE indicate better fit.
Thorndike’s case A formula shows a small bias as the

distributions peak left of the true correlation underesti-
mating predictive validity, even when the first order cor-
relation ryx1∣a was replaced by the semipartial correlation
ryx1•2∣a . However, the true correlation lies well within the
confidence interval of the 1000 replication runs showing
that this bias is rather insignificant. The smallest confi-
dence interval of estimations for r̂yx1∣a is delivered by EM

and the largest by the formulas for direct and indirect
range restriction. With the simulation problem at hand,
MICE did not perform better than EM although
MICE is regarded as the most advanced method for
coefficients estimation when data are missing [15].
The variation of estimated unrestricted correlations

not only depends on the precision of the method, but
even more so on the ratio of selection. If the selected
group gets smaller (20% in Fig. 4b and 10% in Fig. 4c)
the confidence interval grows larger up to a point were
usefulness becomes questionable (Table 1).

Study 2: Application to an entrance test for
medical school
In this study we demonstrate a correction for compensa-
tory selection and range restriction with data obtained
from the Hamburg Natural Science -Test (HAM-Nat)
[27]. The HAM-Nat in combination with hGPA is used
for the selection of medical students in Hamburg,
Germany. Applicants with hGPA above a certain level
are invited to take the test. It consists of 80 MC-Items
from biology, chemistry, physics and mathematics cover-
ing the scope of high school teaching. The hGPA is used
again in combination with HAM-Nat score, to establish
the rank order for admission. School grades (hGPA)
range from 1.0 (excellent) to 6.0 (insufficient) in
Germany. In the year 2011, 207 out of 714 applicants

Fig. 4 a-c Scattergram of Y (study success) with X1 (test results) and precision of the estimation of ryx1∣a (predictive validity) from different
methods when 30%, 20%, and 10% of applicants are selected
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(29%) were admitted by this procedure. As outcome cri-
terion we consider study success as defined by perform-
ance in 11 written exams in the first two study years,
mainly from biochemistry, physiology, and anatomy,
measured as the mean percentile.

Results
The compensatory relation between HAM-Nat and
hGPA imposes a negative correlation between these pre-
dictor variables in the incumbents (Fig. 5) by the same
logic that has been demonstrated in the preceding simu-
lation section (Fig. 1). An applicant with a low hGPA
can still be accepted if her natural science knowledge
test is superior.

We have withheld a complication in our empirical ex-
ample to keep the description of correction methods as
simple as possible. Actually there is a fourth variable
which modifies the rank order in half of the accepted ap-
plicants according to their performance in a test of so-
cial competence [28]. This is not easy to model and we
do not expect much change in the estimation of a cor-
rected validity due to this complication. Therefore we
bypass it for now. A validity coefficient is not a constant
of nature that needs to be known with as many digits as
possible. Considering the sizable error that is made by
the widespread omission of appropriate corrections, a
less than perfect estimation seems tolerable.
Being good at natural science, a student is well equipped

to understand the subject matter of the first terms in med-
ical school. But having on average a lower hGPA, which
was compensated by her or his high science test score
would mean that she or he lacks some of the abilities asso-
ciated with a high hGPA, presumably abilities which help
to negotiate an educational system, dubbed the “academic
backbone” by McManus [29]. A less than strong academic
backbone would counteract the auspicious prospect good
natural science knowledge would bring about.
Due to reciprocal suppression the first order

correlation of both variables with the outcome meas-
ure is lower than the correlation of the residuals
obtained when the linear effect of hGPA is taken out
of the HAM-Nat scores and vice versa (Fig. 6). It
rises from .39 to .41 for the HAM-Nat and from −.06
to .14 for hGPA.
The ratio of standard deviations for the unrestricted

sample relative to the restricted sample is u ¼ SDx1∣a=

SDx1∣i ¼ 0:67 for the HAM-Nat. Different methods of
correction for range restriction yield the values given
in Table 2 for the predictive validity of the HAM-Nat.
The estimations from Thorndike’s case C formula,

EM and MICE and are close when used for the em-
pirical data from the HAM-Nat (Table 2). Therefore
we take the estimation of r̂yx1∣a ¼ :59 as the best esti-
mation of the predictive validity of the HAM-Nat cor-
rected for indirect range restriction. The effects of

Table 1 Mean of precision of the estimation of ryx1∣a (predictive validity) from different methods when 30%, 20%, and 10% of
applicants are selected with RMSE and confidence interval

30% Selection 20% Selection 10% Selection

mean SD RMSE CI 95% mean SD RMSE CI 95% mean SD RMSE CI 95%

Thorndike’s case A −0.07 .05 .085 −0.16 – 0.02 −0.10 .07 .119 −0.23 – 0.02 −0.14 .10 .167 −0.34 – 0.04

Thorndike’s case C 0.00 .04 .043 −0.09 – 0.07 −0.01 .06 .065 −0.14 – 0.10 −0.02 .10 .102 −0.24 – 0.15

EM 0.00 .04 .039 −0.09 – 0.07 −0.01 .06 .058 −0.13 – 0.10 −0.02 .09 .092 −0.23 – 0.12

MICE −0.01 .04 .040 −0.09 – 0.07 −0.01 .06 .059 −0.14 – 0.09 −0.03 .09 .097 −0.24 – 0.12

Note. mean mean of the accuracy in the 1000 simulations, RMSE Root Mean Square Error, CI Confidence Interval

Fig. 5 Scattergram of HAM-Nat and hGPA at Hamburg medical
school for the 2011 cohort

Zimmermann et al. BMC Medical Education  (2017) 17:246 Page 7 of 10



the two artifacts involved can be decomposed:
Correcting for compensatory selection raises r̂yx1∣a
from .39 to .41, and correcting for range restriction
raises r̂yx1∣a further from .41 to .59.

Discussion
Approach from classical test theory
An alternative approach to correct for range restriction
due to indirect selection is Hunter and Schmidt’s step-
wise procedure based on classical test theory [30]. It re-
quires information about the reliabilities of predictor
and outcome measures. Different from most approaches
not the empirical correlation between Y and X1 is esti-
mated, but the operational validity which is defined as

the theoretical correlation rρx1∣a between the true score
of Y, denoted as ρ, and X1. The empirical correlation
ryx1∣a , which according to classical test theory would be

ryx1∣a ¼ rρx1∣a=
ffiffiffiffiffiffiffiffiffiffiffiðryy∣a

p Þ , cannot be recovered by this
method, because the reliability of Y in the unrestricted
sample, ryy ∣ a, is not known.
For the HAM-Nat data presented above the approach by

Hunter and Schmidt yields an estimation of r̂ρx1∣a ¼ 0:66
if the reliability of X1 ∣ a = 0.8 and the reliability of Y∣i = 0.7.
Obviously the estimation of r̂ρx1∣a depends on the reliabil-
ity estimations for X1 and Y, which in turn depend on the
method used, e.g. retest-reliability, split half reliability, or
some coefficient of internal consistency such as Cronbach’s
alpha or omega. As most methods for the estimation of re-
liability suffer from drawbacks [31, 32] the resulting imper-
fection is passed on to the estimation of r̂ρx1∣a . This
method leaves us with the operational validity – a true
score correlation.

True score correlation?
Should a correlation coefficient indicating predictive val-
idity be corrected for attenuation by the unreliability of
the test scores involved? Few researchers use such cor-
rections, even when they otherwise adhere to classical

Fig. 6 Relations between HAM-Nat, hGPA, and Study Success in the incumbents. ryx1 : first order correlation, βyx1 : beta coefficient, ryx1•2 :
semipartial correlation

Table 2 Estimation results of the validity of the HAM-Nat by
four different methods

Correction Method Validity of HAM-Nat
(r̂yx1∣a)

Thorndike’s case A .56

Thorndike’s case C .59

Expectation maximization (EM) .60

Multiple Imputation by Chained Equations (MICE) .59
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test theory (CTT), but some advocate them, e.g. McMa-
nus et al. reporting operational validity and construct-
level predictive validity [3], which is expressed as the
correlation of true scores of both, predictor and criter-
ion. In a paper on measurement Schmidt and Hunter
make a strong case for using correlations corrected for
attenuation instead of empirical correlations because
such measures are supposed to be better estimators of
the relations commonly sought which would be relations
between constructs, not just between test scores [33].
However this direct identification of the statistical ex-
pectation of a test (the true score in CTT terminology)
with a construct is strongly repudiated by critics like
Borsboom and Mellenbergh [34–37]. Simply substituting
the term “expectation” by “true score” does not turn the
statistical expectation of a test score into a meaningful
psychological concept.
The meaning of the true score for the HAM-Nat gets

complicated after a little reflection. Why would scientific
knowledge predict study success? Certainly because it is
auspicious to enter the university with a good founda-
tion for the curriculum of the first two years. But most
probably other more basic third factors are in the game
which act upon scientific knowledge as well as on study
success, factors like motivation, conscientiousness, and
intelligence. The knowledge test measures these factors
silently by proxy because all of them are needed to
achieve a high level of knowledge. If the knowledge
measure would be stripped of such associations, how
much would be left of its predictive power? Pure know-
ledge independent of motivation, conscientiousness, and
intelligence (which is hard to imagine), would merely
consist of the stuff that had been learned devoid of its
link to enduring personal dispositions. Knowledge is not
an enduring trait such as intelligence, or conscientious-
ness, it is acquired and, if not used, forgotten over the
years. Its causal leverage is confined to the narrow range
of the tasks to which it pertains, in this case the natural
science content of the medical curriculum.

A successful test obscures its own validity
Applicants for medical school in Germany are usually
well informed about the tests, which are in store for
them. They prepare for the test if they judge their
chances as sufficiently high, otherwise they neither sub-
mit an application, nor spend time for preparation. If
competition is strong, and it certainly is with a selection
rate of almost 30% in Hamburg in 2011, then the level
of preparation required to stand a chance rises and with
it the effect of self selection into or out of the pool of
applicants. Thus the mere presence of the test exerts a
selective force even before the first multiple choice box
is checked. This selective force also promotes a high
level of ability in the accepted 30%, and if the ceiling of

the test is approached its variance is depleted. High level
of ability and depletion of variance both work together
to reduce whatever correlation might be found between
the test and outcome variables reflecting study success.
In the end all applicants are well equipped to live up to
the natural science demands of the curriculum and no
covariance with differential outcome in this respect is
left. The success of the test will have erased the possibil-
ity to demonstrate its effectiveness.

Conclusions
Empirical bivariate predictor/outcome correlations can-
not be taken as measures of predictive validity if indirect
selection and range restriction exist. Correction methods
are available and should be used. For practical purposes
Thorndike’s case C formula is a relatively straightforward
solution to the range restriction problem, provided dis-
tributional assumptions are met. With EM and MICE
more precision is obtained when distributional require-
ments are not met, but access to a sophisticated statis-
tical package such as R is needed.
Can the results of our study regarding a compensatory

selection decision be transferred to student selection
scenarios that use multiple steps with a single criterion
each? Imagine that applicants are shortlisted for a cogni-
tive test based on their hGPA, but the following selec-
tion decision is based only on their test score. The range
restriction on the hGPA is difficult to estimate as we
have to deal with a self-selection bias: applicants might
not decide to apply if they think that they do not stand a
chance. If solely a cognitive test would be used for the
final selection decision (without the possibility to com-
pensate a low test score by other means), a stronger
range restriction on the test scores would occur. Then
correction for compensatory selection would be unneces-
sary, but correction for range restriction would have a
larger effect. Therefore we think that this correction is
even more important to determine the predictive valid-
ity when an admission test is used as a single criterion.
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