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Abstract 

Background  While game-based learning has demonstrated positive outcomes for some learners, its efficacy remains 
variable. Adaptive scaffolding may improve performance and self-regulation during training by optimizing cogni-
tive load. Informed by cognitive load theory, this study investigates whether adaptive scaffolding based on interac-
tion trace data influences learning performance, self-regulation, cognitive load, test performance, and engagement 
in a medical emergency game.

Methods  Sixty-two medical students from three Dutch universities played six game scenarios. They received 
either adaptive or nonadaptive scaffolding in a randomized double-blinded matched pairs yoked control design. Dur-
ing gameplay, we measured learning performance (accuracy, speed, systematicity), self-regulation (self-monitoring, 
help-seeking), and cognitive load. Test performance was assessed in a live scenario assessment at 2- and 6–12-week 
intervals. Engagement was measured after completing all game scenarios.

Results  Surprisingly, the results unveiled no discernible differences between the groups experiencing adaptive 
and nonadaptive scaffolding. This finding is attributed to the unexpected alignment between the nonadaptive scaf-
folding and the needs of the participants in 64.9% of the scenarios, resulting in coincidentally tailored scaffolding. 
Exploratory analyses suggest that, compared to nontailored scaffolding, tailored scaffolding improved speed, reduced 
self-regulation, and lowered cognitive load. No differences in test performance or engagement were found.

Discussion  Our results suggest adaptive scaffolding may enhance learning by optimizing cognitive load. These 
findings underscore the potential of adaptive scaffolding within GBL environments, cultivating a more tailored 
and effective learning experience. To leverage this potential effectively, researchers, educators, and developers are 
recommended to collaborate from the outset of designing adaptive GBL or computer-based simulation experiences. 
This collaborative approach facilitates the establishment of reliable performance indicators and enables the design 
of suitable, preferably real-time, scaffolding interventions. Future research should confirm the effects of adaptive scaf-
folding on self-regulation and learning, taking care to avoid unintended tailored scaffolding in the research design.
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Trial registration  This study was preregistered with the Center for Open Science prior to data collection. The registry 
may be found at https://​osf.​io/​7ztws/.
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Introduction
Game-based learning (GBL) is a promising tool to sup-
port learning [1–3], but differences in effectiveness 
between learners and learner groups have been observed 
[4–6]. Adaptive scaffolding, meaning the automatic mod-
ulation of support measures based on players’ character-
istics or behaviors, has been shown to improve learning 
outcomes [7, 8], possibly through the optimization of 
cognitive load [3, 9, 10]. However, the number of studies 
into the effects of adaptive scaffolding on cognitive load 
and learning outcomes in GBL is low [9–11]. This study 
aims to investigate the effects of adaptive scaffolding in a 
medical emergency simulation game.

Theoretical background
Cognitive load theory
To understand how the same instruction may have differ-
ent effects on different learner groups, we turn to cogni-
tive load theory (CLT [12]). This theory assumes a limited 
working memory and unlimited long-term memory 
holding cognitive schemas. Expertise comes from knowl-
edge stored as schemas, and learning is described as the 
construction and automation of such schemas. To create 
schemas, new information must be ‘mindfully combined’ 
with other information or existing schemas. When work-
ing memory is overloaded, learning is impaired [13]. It 
follows that learners who have already developed rele-
vant schemas will have more working memory resources 
to spare to deal with the task. These experienced learn-
ers may perform worse at a task when detailed instruc-
tions are provided (the “expertise reversal effect” [14]) 
because working memory becomes bogged down with 
attempts to cross-reference the instruction with exist-
ing schemas in long-term memory. Novice performers 
will benefit from instruction as the instruction may act 
as a central executive to organize the relevant informa-
tion in working memory [3], freeing up cognitive load. 
Accordingly, instructional design should aim to 1) deliver 
learning activities, which present new information to be 
combined into more complex schemas (construction) or 
the opportunity to repeatedly apply existing schemas to 
new problems (automation), and 2) optimize cognitive 
load, to allow the learner to mindfully combine the new 
information.

In understanding how instruction influences cog-
nitive load it is helpful to consider different types of 

cognitive load. Intrinsic cognitive load refers to the 
demands on working memory caused by the learning 
task itself. The more complex the learning task, or the 
lower the learner’s expertise, the higher the intrinsic 
cognitive load. Thus, the same learning task may cause 
a high cognitive load for a low-expertise learner but a 
low cognitive load for a high-expertise learner. Extra‑
neous cognitive load is the load caused by demands 
on working memory caused by the instruction and the 
environment, rather than the information to be learned. 
Finally, germane cognitive load is the load required to 
deal with intrinsic cognitive load. It redistributes work-
ing memory resources to activities relevant to learning 
so that it promotes schema construction and automa-
tion. Techniques to measure cognitive load include 
direct measures such as subjective rating scales, includ-
ing the popular 1-item Paas scale for mental effort [15–
17], and dual-task methods (e.g. [18], Rojas, Haji [19], 
as well as indirect measures such as learning outcomes 
[20], physiological measures [21], and behavioral meas-
ures [22].

To optimize cognitive load in learning environments 
several principles have been described (e.g. [3, 23, 24]), 
including tailoring the instructional design to vary-
ing levels of learner expertise [9]. This may be accom-
plished through scaffolding, “the process whereby the 
support given to students is gradually reduced to coun-
teract the adverse effects of excessive task complexity” 
[25]. Scaffolding is closely related to Vygotsky’s Zone 
of Proximal Development [26]. The additional support 
may take the form of supportive information (the pro-
vision of domain-general strategies to perform a task) 
or procedural information (specific information on how 
to complete routine aspects of a task) [27]. With scaf-
folding, the learner can perform more complex tasks 
or perform tasks more independently [27–29]. Scaf-
folding in general has been shown to improve learning 
outcomes in GBL [30]. However, superfluous scaffold-
ing will increase extraneous cognitive load, for exam-
ple by causing the learner to cross-reference provided 
instructions with information already present in their 
long-term memory, while insufficient or unnecessary 
scaffolding fails to lower the burden placed on the 
learner’s working memory, impeding the learning pro-
cess in both situations [7, 31]. Consequently, it is criti-
cal to provide contingent scaffolding: the right type and 
level of support at the appropriate time and rate.

https://osf.io/7ztws/
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Adaptive scaffolding
To ensure contingent scaffolding in computer-based 
learning environments such as digital GBL, adaptiv-
ity may be used: the automatic adjustment of a system 
to input from the player’s characteristics and choices 
[32]. While nonadaptive systems exacerbate differences 
between individuals, adaptations that are responsive to 
individual differences have been proposed to improve 
the equality and diversity of educational opportuni-
ties [33]. Adaptivity improves learning in hypermedia 
environments [34]. In GBL, several studies have inves-
tigated adaptivity, demonstrating promising effects on 
skill acquisition [35–37]. However, not all studies demon-
strate favourable results [38].

Appropriate adaptive scaffolding should be triggered 
by indicators that identify the learner’s need for support. 
These indicators may be obtained before, during, or after 
a learning task. Examples include the learner’s current 
knowledge level, cognitive load, stress measurements, 
performance assessments, or interaction traces docu-
menting in-game events, choices, and behaviors, either 
separately or in combination [9, 10, 32, 39, 40]. Of these 
options, interaction traces in particular offer the advan-
tage of unobtrusive and real-time collection, allowing 
for adaptations on a small timescale with short feedback 
loops. Examples of traces that can be used as indicators 
of performance in GBL include accuracy, speed, systema-
ticity, and self-monitoring actions [41–44].

From the analysis presented above, we assume that 
adaptive scaffolding based on interaction traces is likely 
to positively influence cognitive load and improve learn-
ing task performance by freeing up working memory 
resources. In addition, this mechanism may improve the 
learner’s ability to self-regulate their learning, increase 
the transfer of learning, and influence learner engage-
ment. We will discuss each of these below.

First, self-regulation of learning (SRL) refers to the 
modulation of affective, cognitive, and behavioral pro-
cesses throughout a learning experience to reach the 
desired level of achievement [45]. Improved SRL can 
facilitate the learning of complex skills [46–51]. For 
example, students with higher developed SRL skills are 
better able to monitor their learning process during a 
task, recognize points of improvement, and use cogni-
tive resources to support their learning, including help-
seeking. Accordingly, SRL skills have been associated 
with improved confidence in learning, academic achieve-
ment, and success in clinical skills [47, 49, 52, 53]. SRL is 
especially important in GBL, as the inherent openness of 
the learning environment requires students to take con-
trol of their learning [54]. Several authors have presented 
suggestions on how to integrate CLT and SRL theory, 
arguing that metacognitive and self-regulatory demands 

should be conceptualized as a form of working memory 
load that can add to the cognitive load related to task 
performance [55–57]. In this light, optimizing cognitive 
load through adaptive scaffolding allows more resources 
for SRL activities. Indeed, adaptive scaffolding has been 
shown to improve self-regulated learning in non-game 
environments [8, 34, 38] and it has been suggested that 
adaptive scaffolding can prompt students to consciously 
regulate their learning [7].

Second, we expect adaptive scaffolding to influence 
the transfer of learning: applying one’s prior knowledge 
or skill to novel tasks, contexts, or related materials [58]. 
In GBL transfer may not arise naturally, as learning takes 
place in an environment that can be notably different 
from real-life practice. However, well-designed simula-
tions and games are favorable for situated learning, which 
is known to improve learning and transfer [59]. Transfer 
can be promoted by effortful learning conditions that 
trigger active and deep processing. Instructional strate-
gies aiming to create these conditions include variability 
in practice and encouraging elaboration. From the CLT 
perspective, these strategies aim to increase germane 
cognitive load. Adaptive scaffolding can enhance this 
process by decreasing extraneous load when the learner 
is overloaded and increasing germane load in the case 
of cognitive underload. Research demonstrating these 
effects is scarce, with a notable paper by Basu, Biswas 
[60] reporting improved transfer of computational think-
ing skills in students who received adaptive scaffolding 
during training.

Third, scaffolding is likely to influence game engage-
ment, meaning the experience of being fully involved in 
an activity. The ease of starting, playing, and progressing 
in the game are important factors that influence engage-
ment [61]. Engagement improves learning and increases 
information retention [62]. Different effects of scaffolding 
on engagement in GBL have been reported. For example, 
Barzilai and Blau [63] found no effect on engagement, 
while others have demonstrated decreases in engage-
ment (e.g. [63–65]. It should be noted that these findings 
relate to nonadaptive scaffolding. If this scaffolding fails 
to optimize cognitive load, it is likely that learners will 
lose motivation to continue working on a task [66] and 
be less engaged. On the contrary, adaptive scaffolding 
designed to optimize cognitive load may positively influ-
ence engagement, as observed in one study by Chen, Law 
and Huang [7].

Evaluating adaptive interventions
To specifically evaluate the effects of adaptive scaffold-
ing, a yoked control research design may be applied [9, 
35, 40]. In this design, matched participants are yoked 
(joined together) by receiving exactly the same treatment 
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or interventions. From each pair, at random one partici-
pant is assigned to the adaptive condition and receives 
scaffolding tailored to their needs while their counter-
part, assigned to the nonadaptive condition, is exposed 
to exactly the same scaffolding. Consequently, for the 
participant in the nonadaptive condition, the scaffolding 
is not intentionally adapted to their needs. The advantage 
of the yoked control design is that it allows the evalua-
tion of the adaptation specifically. A difference in out-
come may be attributed to the adaptation rather than the 
received support. However, depending on the heteroge-
neity in input used for the adaptive scaffolding, the nona-
daptive scaffolding may coincidentally match the needs 
of the participant if their needs are the same as their 
counterpart adaptive in the adaptive condition. We will 
refer to the situation where participants in the nonadap-
tive condition coincidentally receive needed scaffolding 
as tailored scaffolding and the situation where they do 
not receive needed support as nontailored scaffolding.

Purpose of the study
In the present study, we will investigate the effects of 
adaptive scaffolding in a medical emergency simula-
tion game. We hypothesize that adaptive scaffolding 
will result in lower cognitive load through a decrease in 
extraneous cognitive load (hypothesis 1). This decrease 
in cognitive load will free up working memory capacity, 
allowing the learner to better process the information 
in the learning task. This will result in improved learn-
ing task performance (hypothesis 2) during gameplay, 
measured as accuracy (hypothesis 2a), speed (hypothesis 
2b), and systematicity (hypothesis 2c). Working memory 
capacity may also be used for self-regulatory activities, 
including (more) self-monitoring (hypothesis 3a) and 
(more) help-seeking (hypothesis 3b). We hypothesize 
that improved task performance and self-regulation will 
lead to more effective learning, measured as improved 
transfer test performance (hypothesis 4). Regarding 
engagement, we hypothesize that adaptive scaffolding 
will improve learner engagement (hypothesis 5). In the 
current study, we will compare the adaptive and nona-
daptive scaffolding groups for each hypothesis, as well as 
discuss post hoc exploratory analyses regarding the influ-
ence of tailored scaffolding in the non-adaptive group.

Methods
Design
To specifically evaluate the effects of adaptive scaffolding, 
we used a yoked control design as described above. Par-
ticipants from the same university and either the same 
or immediately adjacent emergency care experience (0 
cases, 1–2 cases, 3–5 cases) were matched in pairs. From 
each pair, one participant was randomly assigned to the 

adaptive scaffolding condition and the other to the nona-
daptive condition. Ethical approval was provided by the 
Ethical Review Board of the Netherlands Association for 
Medical Education (dossier number 2021.3.5). Partici-
pants signed informed consent.

Participants
Materials

Demographics questionnaire  A questionnaire was 
available regarding age, gender, study year, university of 
enrollment, and experience in emergency care. The ques-
tionnaire can be found in Appendix 1.

E‑learning and knowledge test  In emergency care, 
healthcare professionals are trained to adhere to the 
ABCDE approach. This is an internationally used method 
in which the acronym “ABCDE” guides healthcare pro-
viders to examine and treat patients in the following 
phases: Airway, Breathing, Circulation, Disability, and 
Exposure. Following the ABCDE structure ensures that 
the most life-threatening conditions are treated first. For 
example, in the ‘B’ phase, the healthcare provider focuses 
on the breathing by listening to the lungs, checking for 
blue discoloration of the skin (cyanosis), ordering a chest 
X-ray if necessary, and providing inhalation medication if 
needed.

To provide students with knowledge of the ABCDE 
approach, an e-learning module consisting of ± 90 screens 
of information, illustrations, interactive questions, and 
videos on emergency medicine and the ABCDE method 
was available online. To confirm sufficient knowledge, we 
used a validated knowledge test on the ABCDE approach 
developed using the Delphi method [67]. The test con-
tained 29 multiple-choice items. We applied a pass rate 
of 60% to ensure an adequate knowledge level. The test 
could be re-taken an unlimited number of times.

The abcdeSIM simulation game  In the abcdeSIM 
simulation game, players must assess and treat a virtual 
patient in a simulated virtual emergency department 
[5]. For familiarization, a walk-through tutorial and a 
practice scenario are available. In the practice scenario, 
the patient is healthy and their condition does not dete-
riorate. The game contains different scenarios in which 
a patient presenting with a medical condition must be 
examined, diagnosed, and treated within 15 min. After 
completing a scenario, a score and feedback on inter-
ventions are displayed. The game score is generated by 
adding points for correct interventions and subtracting 
points for harmful interventions or overlooked necessary 
interventions. If all vital interventions are performed, a 
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time bonus of one extra point per second remaining is 
awarded. The patient’s underlying condition determines 
the required interventions, which were established by a 
panel of content experts.

We used the practice scenario and six emergency sce-
narios in a fixed order as follows: practice, deep venous 
thrombosis, chronic obstructive pulmonary disease, gas-
trointestinal bleeding, acute myocardial infarction, sepsis 
caused by pneumonia, and anaphylactic shock. Complex-
ity increases with subsequent scenarios, meaning the 
patient’s condition is more severe and requires more or 
more urgent interventions.

Scaffolding in the abcdeSIM game  To enable scaffold-
ing in the abcdeSIM game, we implemented additional 
supportive information and procedural information as 
described by Faber, Dankbaar and van Merriënboer [68]. 
Both types of information can be toggled on and off sepa-
rately, resulting in four possible scaffolding combinations: 
both supportive and procedural information provided, 
neither provided, only supportive information provided 
and only procedural information provided.

Supportive information explains to the learners how a 
learning domain is organized and how to approach prob-
lems in that domain. It supports the learner in developing 
general schemas and problem-solving approaches [27]. 
In the abcdeSIM game, supportive information consisted 
of an extended checklist designed to facilitate the con-
struction of a cognitive schema representing the ABCDE 

approach. The original abcdeSIM game includes a basic 
checklist intended to help the learner structure their 
approach (Fig.  1), consisting of simple checkboxes for 
the general approach in each ABCDE phase. However, it 
does not specify which actions or measurements should 
be performed. The extended checklist prompts the player 
to evaluate specific items in each phase, such as looking 
at skin color, listening to the heart, and measuring blood 
pressure in the ‘C’ phase (Fig. 2).

Additional procedural information, meaning informa-
tion provided in a just-in-time manner to complete rou-
tine aspects of tasks in the correct way [27], was imple-
mented by showing a dialogue box upon tool selection. 
This dialogue box displays information on how and when 
to use the tool and appears every time the tool is selected 
until the player indicates to have read the information 
(Fig. 3).

Adaptive scaffolding algorithm  Adaptive scaffolding 
was provided based on different measures of task per-
formance in the previously played scenario. The algo-
rithm for adaptive scaffolding is summarized in Fig.  4. 
First, supportive information was provided when cogni-
tive strategy use was deemed inadequate. We used sys-
tematicity in approach as a measure for adequate cogni-
tive strategy use. Systematicity in approach, quantified 
using a Hidden Markov Model as described by Lee et al. 
[44], describes the level to which a player takes actions 
in the correct order. The model yields a score rang-
ing from 0 to 1. A high systematicity indicates efficient 

Fig. 1  The basic checklist in abcdeSIM
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knowledge-based cognitive strategies. To establish cutoff 
points for systematicity, we used data from a previous 
study with medical students playing the abcdeSIM game 
[41] (M = 0.71 and SD = 0.11). If the systematicity in the 
first scenario was below 0.70, additional supportive infor-
mation was activated in the form of the extended check-
list described above. For each subsequent scenario, the 
extended checklist was deactivated when systematicity 

increased at least 0.05 or was above 0.95, and activated if 
systematicity decreased by 0.05 or more.

Secondly, procedural information about tool use was 
provided based on the frequency of inappropriate tool 
use, quantified by counting the number of times the 
in-game nurse issued a warning to the player during a 
scenario. We consider this an indicator of insufficient 

Fig. 2  The extended checklist in abcdeSIM. A tab for general information (e.g. patient characteristics, presenting complaints) and one for each 
ABCDE phase prompt the player to examine specific features

Fig. 3  Tool information is provided in a dialogue box when a tool is selected. A checkbox in the bottom left corner enables the player to indicate 
they have read the information and do not want it to be shown again
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procedural knowledge regarding the correct application 
of the instruments available in the game. The presence of 
any warnings led to additional procedural scaffolding by 
activating tool information for the subsequent scenario. 
If no warnings occurred, tool information was deacti-
vated in the subsequent scenario.

Outcome measures
Learning performance
To operationalize learning performance, meaning the 
performance in the game, we measured the accuracy 
of clinical decision-making, speed, and systematicity. 
Accuracy represents applied domain knowledge and 
was measured as the game score minus the time bonus. 
Speed represents the strength of cognitive strategies 
used and was shown to distinguish between experts 
and novices by Lee et  al. [44]. We measured speed 
both as the total time to scenario completion and as 
the relative time to complete three critical interven-
tions: introducing oneself, attaching the vital functions 
monitor, and providing oxygen. To allow comparison 
between different scenarios, z-scores were calculated 
per scenario after checking the normality of distribu-
tion. Finally, systematicity represents the quality of 
cognitive strategies, or how to approach unfamiliar 
problems in this context. We operationalized systema-
ticity as a measure of how well the player adhered to 
the ABCDE approach, calculated as described under 
‘Adaptive scaffolding algorithm’ above. An overview of 
all included outcome measures is provided in Table 1.

Cognitive load
Using an online questionnaire, we measured cognitive 
load for each game scenario using the Paas subjective 
rating scale [69] asking how much mental effort they 
invested in the task on a 1–9 scale, labeled from 1 = ‘very, 
very low mental effort’ to 9 = ‘very, very high mental 
effort’. According to Paas, Tuovinen [15], mental effort 
measured using this scale refers to “the aspect of cogni-
tive load that is allocated to accommodate the demands 
imposed by the task” and as such may be considered to 
reflect the actual cognitive load.

Self‑regulated learning
Interaction traces can offer insight into the use of specific 
SRL strategies in the game, such as monitoring, problem-
solving, and decision-making processes [39, 70]. To quantify 
the use of specific SRL strategies, we recorded the number 
of times participants accessed the checklist as a measure of 
monitoring and the number of telephone calls to a medical 
specialist or consultant as a measure of help-seeking.

Transfer test performance
To quantify transfer test performance, we used a live 
scenario-based skill assessment of the ABCDE approach 
at two time points (immediate assessment and delayed 
assessment). Four different scenarios were designed by 
content experts to be distinct from the game scenarios 
and checked for similar complexity. The scenarios con-
cerned patients presenting with hypoglycemia, urosepsis, 
pneumothorax, and ruptured aneurysm of the abdominal 

Fig. 4  Algorithm for adaptive support



Page 8 of 19Faber et al. BMC Medical Education          (2024) 24:943 

aorta. In the immediate assessment, participants were 
presented with first the hypoglycemia and then the uro-
sepsis scenario. In the delayed assessment, they were 
presented with first the pneumothorax and then the rup-
tured aneurysm of the abdominal aorta scenario. Expert 
clinicians experienced in simulation-based training and 
assessment facilitated the scenarios, playing the role 
of nurse, and assessed the participants’ performance. A 
basic manikin and practice crash cart were used. Vital 
functions, patient responses, and additional informa-
tion were provided by the scenario assessor. The partici-
pants did not have to perform psychomotor skills, such 
as placing an iv or attaching the monitor, but did have 
to indicate when to apply these skills. The assessor rated 
performance using an assessment instrument adapted 
from Dankbaar et al. [71]. The rating consisted of a Com-
petency Scale (6 items on the ABCDE method and diag-
nostics, rated on a 7-point scale from 1 = “very weak” to 
7 = “excellent”) and a Global Performance Scale using a 
single 10-point scale to rate ‘independent functioning in 
caring for acutely ill patients in the Emergency Depart-
ment’ (10 = “perfect”) as if the participant were a recently 
graduated physician. The assessment instruments are 
shown in Appendix 2. To improve inter-rater reliability, 
the first author briefed all raters on the content of the 

scenarios, how to run the scenarios, how much support 
and guidance to provide during the assessment, and how 
to use the assessment instruments. Raters were blinded 
to the scaffolding conditions and the participant’s year 
of study. Feedback to the participant was provided only 
after the delayed assessment.

Game engagement
To measure game engagement, we used a question-
naire on participants’ experience adapted from Dank-
baar, Stegers-Jager, Baarveld, Merrienboer, Norman, 
Rutten, et al. [5]. The questionnaire consists of 9 state-
ments, including items such as: “I felt actively involved 
with the patient cases”, to be scored on a 5-point Likert 
scale (5 = fully agree). The questionnaire can be found in 
Appendix 3.

Procedure
The overall study design is visualized in Fig.  5. After 
enrollment, all participants were given access to the 
e-learning module and completed the demographics 
survey. Next, they were randomly divided into matched 
pairs. After passing the knowledge test, participants 
gained online access to the six game scenarios.

In the scenarios, scaffolding was provided as follows:

Table 1  Overview of outcome measures

a Systematicity was used as a learning performance outcome measure and as input for the adaptive scaffolding algorithm

Indicative of Derived from

Learning performance

  Accuracy Applied domain knowledge Points are added for correct interventions executed in the game and subtracted 
for harmful interventions. To attain a high score, the player must demonstrate 
knowledge of the interventions that are and are not indicated for this patients’ 
condition

  Speed (absolute) Strength of cognitive strategies Total time to scenario completion

  Speed (relative) Strength of cognitive strategies The relative time it has taken the player to perform critical actions required for all 
scenarios: attaching the monitor, applying oxygen, and introducing oneself 
to the patient

  Systematicity in approach a Cognitive strategies – knowing 
how to approach an unfamiliar 
problem

Actions are labeled A, B, C, D, or E in chronological order. Using a Hidden Markov 
Model, a score ranging from 0 to 1 is calculated, indicating if the actions were 
performed in the appropriate order. The more the sequence resembles the cor-
rect order of A-B-C-D-E, the higher the score

Cognitive load

  Paas’ mental effort scale Questionnaire asking how much mental effort they invested in the task on a 1–9 
scale, labeled from 1 = ‘very, very low mental effort’ to 9 = ‘very, very high mental 
effort’

Self-regulation

  Self-monitoring Number of times the player opens the checklist menu

  Help-seeking Number of times the player calls a medical specialist using the in-game tel-
ephone

Test performance

  Immediate test performance Live scenario-based skill assessment of the ABCDE approach

  Delayed test performance Live scenario-based skill assessment of the ABCDE approach

  Game engagement Questionnaire on participants’ experience using the game
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1)	 Adaptive scaffolding condition: in the first patient 
scenario, no scaffolding was provided. In subse-
quent scenarios, adaptive scaffolding was provided as 
described above.

2)	 Non-adaptive condition: the yoked participant 
received the same scaffolding as the participant they 
were matched to. Each training sequence was allo-
cated only once to one participant in the non-adap-
tive condition.

During the game scenarios, learning performance out-
come measures were collected automatically. After each 
game scenario, participants were requested to indicate 
the cognitive load for the scenario in the separate online 
cognitive load questionnaire. After the sixth and final 
game scenario, they completed the engagement question-
naire. Within two weeks of completing the final game sce-
nario, participants performed the first live scenario-based 
skill assessment. Six to twelve weeks later, participants 
returned for a delayed live scenario-based skill assessment 
to measure long-term retention. They could not access 
the abcdeSIM game between the two assessments.

Analysis
Confirmatory analysis
For each game session, we used a specialized JavaScript 
parser to extract accuracy, scenario completion time, 
systematicity in approach, self-monitoring, and help-
seeking as described by Faber, Dankbaar, Kickert, van 
den Broek and van Merriënboer [41]. The analysis was 
performed in R [72] using the Rstudio software version 
1.2.1335 [73]. Data were visually inspected for normality. 
Differences between the groups in participant character-
istics were tested for significance using paired t-tests for 
continuous variables and Stuart-Maxwell tests for cat-
egorical variables. We calculated Cronbach’s alpha for the 
questionnaires and assessment instruments to evaluate 
reliability. Multilevel correlations between the learning 
performance outcome measures were calculated using 
the correlation package [74].

For hypotheses 1, 2 and 3, we used multilevel regres-
sion (also known as linear mixed) models, taking into 
account the number of scenarios already played by the 

student. This type of model has been widely used in 
longitudinal data where repeated measurements of the 
same participants are taken over the study period [75]. 
We fitted a partially crossed linear mixed model, using 
the lme4 package [76]. We fit separate models for the fol-
lowing outcome measures: cognitive load (H1), accuracy, 
time spent on the scenario, time to vital interventions, 
and systematicity (H2), and frequency of self-monitoring 
and help-seeking (H3). We used the outcome measures 
as criterion measures and random intercepts for pair 
and participant as random effects, to account for the 
dependent data structure. As fixed effects, we included 
the number of scenarios played and the scaffolding con-
dition (adaptive vs. non-adaptive). To calculate p val-
ues, we performed likelihood ratio tests comparing the 
full model with the effects in question against the model 
without the effects in question. Model comparisons can 
be found in Supplementary Table A. To test hypotheses 4 
and 5, we performed a paired t-test for transfer test per-
formance and engagement outcomes per condition.

Exploratory analysis
Because tailored scaffolding occurred, meaning par-
ticipants in the nonadaptive group received the same 
support as they would have in the adaptive group, 
we performed separate exploratory subgroup analy-
ses within the nonadaptive group. For learning per-
formance, SRL, and cognitive load, we included these 
outcome measures as criterion measures and random 
intercepts for participants as random effects in multi-
level regression models. As fixed effects, we included 
the number of scenarios played and whether support-
ive and procedural information was tailored. Model 
comparisons for the tailored scaffolding models can be 
found in Supplementary Table B. For test performance 
and engagement, we calculated Pearson’s r to test for 
correlations between the number of scenarios played 
with tailored scaffolding and the outcome measure.

Results
Baseline characteristics
Eighty-three medical students (age M = 22.8 years, 
SD = 1.8) participated in the study. One participant was 

Fig. 5  Study design
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excluded because they did not adhere to the study pro-
tocol. Sixty-nine participants completed all six game 
scenarios, resulting in 32 complete pairs. The other 19 
participants either could not be matched or failed to 
complete the game scenarios.

Participants in the adaptive and nonadaptive groups 
were similar in age, gender, experience with emer-
gency care, study year, and score on the knowledge test. 
Detailed characteristics are shown in Table  2.  Tailored 
scaffolding was observed in 64.9% of the game scenarios 
played in the nonadaptive group, with an average of 3.9 
tailored scenarios per participant (range 2–6). One par-
ticipant in the nonadaptive group received tailored scaf-
folding on all six scenarios.

Sixty-four students matched in 32 pairs played a total 
of 384 game scenarios. The cognitive load questionnaire 
was completed for 244 game sessions played by 49 par-
ticipants in 30 pairs (64.7% of game sessions). For seven 
game scenarios data were not available for analysis due 
to technical problems, resulting in data available for 
analysis for 377 game sessions played by 63 participants 
in 32 pairs for learning performance (accuracy, scenario 
completion time, and systematicity) and self-regulated 
learning (help-seeking and monitoring). Time to vital 
interventions could not be calculated in 160 sessions 
because one or more vital actions had been omitted, 
resulting in 221 sessions available for this analysis. Thirty 
student pairs completed the initial transfer test and 
twenty-three the delayed transfer test.

Reliability of instruments
In contrast to previous research validating the knowledge 
test with acceptable internal consistency (Cronbach’s 
α = . 77, [67]) our data show poor consistency (α = 0.55, 
95% CI [0.38—0.69]). Internal consistency for the assess-
ment scores was excellent (α = 0.95, 95% CI [0.93—0.97]). 
There was a strong correlation between the score for the 
competency scale and the global performance scale, for 
both the immediate (rp = 0.89, p < 0.001) and the delayed 
assessment (rp = 0.90, p < 0.001).

A weak positive correlation was found between accu-
racy and total scenario time (r = 0.27, p = 0.015). For cog-
nitive load, a significant correlation was present with 
systematicity (r = -0.28, p = 0.008) and total scenario time 
(r = 0.27, p = 0.015) but not accuracy, self-monitoring or 
help-seeking. Self-monitoring significantly correlated with 
accuracy (r = 0.32, p = 0.001) and total scenario time (r = 0.33, 
p < 0.001) but not with systematicity or help-seeking. For help-
seeking we found a positive correlation with both accuracy 
(r = 0.35, p < 0.001) and total scenario time (r = 0.42, p < 0.001).

Confirmatory analysis
Learning performance
Adaptive scaffolding condition did not significantly 
predict accuracy, time to vital interventions, and sys-
tematicity (Supplementary Table A). A trend toward 
longer scenario completion time was found for the adap-
tive scaffolding condition (β = 52.60 s, SE = 27.71, 95% 
CI = [-1.89 – 107.09], Supplementary Table B).

Table 2  Participant characteristics per group

a Paired t-test
b Stuart-Maxwell test

Adaptive (N = 31) Non-adaptive (N = 31) p-value

Age 0.570a

  Mean (SD) 22.7 (1.901) 22.9 (1.672)

  Range 20.0—26.0 20.0—27.0

Gender 0.606b

  Male 8 (25.8%) 7 (22.6%)

  Female 23 (74.2%) 23 (74.2%)

  Other 0 (0.0%) 1 (3.2%)

Experience in emergency care 0.171b

  N-Miss 5 2

  0 cases 16 (61.5%) 14 (48.3%)

  1–2 cases 7 (26.9%) 9 (31.0%)

  3–5 cases 3 (11.5%) 6 (20.7%)

Study year 0.884a

  Mean (SD) 4.36 (1.082) 4.32 (1.045)

  Range 3.00—6.00 3.00—6.00

Score on knowledge test (%) 0.158a

  Mean (SD) 81.79 (10.00) 85.55 (8.03)

  Range 62.06—100.00 68.97 – 96.55
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Cognitive load
The model including scaffolding condition could not 
significantly predict cognitive load compared with the 
model without scaffolding condition (χ2 = 1.71, df = 1, 
p = 0.191, Supplementary Table A).

Self‑regulated learning
Adaptive scaffolding condition predicted a non-significant 
increase in the frequency of self-monitoring (β = 0.65, 
SE = 0.35, 95% CI [-0.03 – 1.34], Supplementary Table B). 
Help-seeking was not predicted by scaffolding condition.

Transfer test performance
We did not find differences in initial test performance 
between the conditions on both competency and global 
performance (respectively t = 0.71, df = 29, p = 0.480 and 
t = 0.93, df = 29, p = 0.357). Similarly, there were no dif-
ferences in test performance on the delayed test (respec-
tively t = -0.97, df = 22, p = 0.341 and t = -0.96, df = 21, 
p = 0.350). Results are shown in Table 3.

Engagement
Engagement was not significantly different between the 
adaptive and nonadaptive groups (t = 0.75662, df = 29, 
p = 0.455).

Exploratory analysis
Thirty-two students in the non-adaptive group played a 
total number of 192 game scenarios. One scenario was 
not available for analysis due to technical issues, result-
ing in data for 191 game scenarios available for accuracy, 
scenario completion time, systematicity, help-seeking 
and self-monitoring. For 111 scenarios the time to vital 
interventions could be calculated. For 110 sessions, cog-
nitive load data were measured. In 168 scenarios (87.9%) 
tailored supportive information was provided, while tai-
lored procedural information was provided in 142 sce-
narios (74%). Descriptive statistics by tailored supportive 
and procedural scaffolding is available in Supplementary 
Table G and Supplementary Table H.

Learning performance
Full model estimates can be found in Supplemen-
tary Table F. Tailored scaffolding significantly pre-
dicted scenario completion time (χ2 = 8.12, df = 2, 
p = 0.017) and time to vital interventions (χ2 = 8.54, 
df = 2, p = 0.014), but not accuracy and systematic-
ity. As can be seen in Fig. 6, scenario completion time 
decreased both with tailored supportive and proce-
dural information (respectively β = -90.57, SE = 35.35, 
95% CI [-160.13 – -21.02] and β = -36.76, SE = 27.10, 

Table 3  Test performance results for the adaptive and nonadaptive condition

Adaptive (N = 31) Nonadaptive (N = 31) p-value
(paired t-test)

Test performance on the first transfer test
  Competency score .480

    —N-Miss 0 1

    —Mean (SD) 4.516 (0.799) 4.350 (1.213)

    —Range 3.083—6.167 2.167—6.583

  Global performance score .357

    —N-Miss 0 1

    —Mean (SD) 5.903 (1.274) 5.583 (1.848)

    —Range 4.000—9.000 2.500—9.000

Test performance on delayed transfer test
  Competency score .341

    —N-Miss 0 8

    —Mean (SD) 4.618 (0.667) 4.837 (0.879)

    —Range 3.083—5.500 2.333—5.833

  Global performance score .350

    —N-Miss 1 8

    —Mean (SD) 5.783 (1.284) 6.087 (1.451)

    —Range 2.500—8.500 2.000—8.000

  Engagement
    —N-Miss .455

    —Mean (SD) 3.881 (0.494) 3.785 (0.480)

    —Range 2.778—4.556 2.444—4.667
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95% CI [-90.23 – 16.72]). Tailored supportive infor-
mation strongly decreased time to vital interventions 
(β = -0.82, SE = 0.32, 95% CI [-1.45 – -0.19]) while 
tailored procedural information had a weaker oppo-
site effect, slowing the participants down (β = 0.32, 
SE = 0.25, 95% CI [-0.18 – 0.83]).

Cognitive load
Including tailored scaffolding significantly improved 
the model to predict cognitive load (χ2 = 14,85, df = 6, 
p = 0.021, Supplementary Table B). As shown in Fig.  5, 
tailored supportive information significantly lowered 
cognitive load (respectively β = -0.88, SE = 0.34, 95% CI 
[-1.56 – -0.20] Fig.  5) and a similar trend was observed 
for tailored procedural information (β = -0.51, SE = 0.30, 
95% CI [-1.10 – 0.09]). Full results of the model can be 
found in Supplementary Table C.

Self‑regulated learning
In the nonadaptive group, tailored scaffolding signifi-
cantly predicted both self-monitoring and help-seeking 
(respectively χ2 = 8.39, df = 2, p = 0.015 and χ2 = 6.99, df = 2, 
p = 0.030). Tailored supportive information decreased the 
frequency of self-monitoring in the scenario in which it was 
provided (β = -0.85, SE = 0.30, 95% CI [-1.44 – -0.26]) but had 
no large influence on help-seeking. In contrast, tailored pro-
cedural information did not influence self-monitoring sig-
nificantly, but decreased help-seeking (β = -0.81, SE = 0.31, 
95% CI [-1.41 – -0.21]), as can be seen in Fig.  7. Visual 
inspection (Figs. 8 and 9) suggests that the presence of the 
extended checklist increased monitoring behavior, regard-
less of the student’s needs. A post hoc multilevel model 
was constructed using self-monitoring as a criterion meas-
ure, random intercepts for participants, and as fixed effects 
the number of scenarios played, whether or not support-
ive and procedural information was available, and whether 

Fig. 6  Scenario completion time and tailored supportive information. Participants receiving tailored supportive information (blue) are faster, 
compared to participants receiving nontailored supportive information (red). Left: participants who do not need supportive information are faster 
to complete the scenario when information is not provided (blue) compared to those who are provided with supportive information (red). Right: 
when supportive information is indicated, providing the information results in a faster completion (blue) compared to not providing supportive 
information (red)
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supportive and procedural information was tailored. This 
model was significantly different from the original model 
without the availability of supportive and procedural infor-
mation (χ2 = 45.49, df = 2, p < 0.001) and showed that the 
presence of the extended checklist significantly increased 
self-monitoring (β = 1.52, SE = 0.21, 95% CI [1.11– 1.94]).

Transfer test performance
Looking at the influence of tailored scaffolding in the nona-
daptive group, competency and global performance were 
not significantly correlated with the number of scenarios 
with tailored scaffolding on the first assessment (respectively 
rp = 0.07, p 0.694 and rp = -0.01, p = 0.944), and on the delayed 
assessment (rp = -0.13, p = 0.537 and rp = -0.10, p = 0.641).

Engagement
The number of scenarios with tailored scaffolding did 
not correlate with engagement in the non-adaptive group 
(rp = 0.04, p = 0.838).

Discussion
This study investigated the effects of adaptive scaffold-
ing in a medical emergency simulation game on cognitive 
load, self-regulation, learning performance, transfer test 
performance, and engagement in a yoked control design. 
Apart from a trend towards more frequent self-monitor-
ing and a longer time to scenario completion, we found 
no significant differences between the adaptive and nona-
daptive groups. Unfortunately, the study’s power to detect 
differences between the groups was reduced because 
participants in the nonadaptive group also received scaf-
folding tailored to their needs in 64.9% of the game sce-
narios. This likely occurred because participants in both 
groups displayed comparable in-game behaviors. A simi-
lar limitation was mentioned by Salden, Paas and van 
Merriënboer [40], proposing that homogeneity in prior 
knowledge and expertise level explain this phenomenon, 
although they do not describe to what extent it occurred. 
Consequently, we performed exploratory analyses in the 

Fig. 7  Cognitive load and tailored supportive information. Tailored supportive information (blue) results in a lower cognitive load compared 
with nontailored supportive information (red). Left: participants who do not need supportive information experience higher cognitive load 
when information is provided compared to those who are not provided with supportive information. Right: when supportive information 
is indicated, providing the information results in a lower cognitive load compared to not providing supportive information
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nonadaptive subgroup investigating the effects of tailored 
versus non-tailored scaffolding.

Regarding hypothesis 1, the results of the exploratory 
analyses suggest that tailored scaffolding lowered cogni-
tive load. This effect can be explained by a reduction in 
extraneous load: students who do not require support do 
not need to cross-reference the information provided by 
the scaffolding with existing schemas, while students who 
lack knowledge on how to proceed are given scaffolding 
that can organize their learning [3].

Regarding learning performance (hypothesis 2), accu-
racy and systematicity could not be predicted and results 
regarding speed were mixed. While the adaptive group 
as a whole took longer to complete the scenarios com-
pared with the nonadaptive group, in the nonadaptive 
group tailored scaffolding shortened the time to sce-
nario completion. Time to vital interventions decreased 
with tailored supportive information but increased with 
tailored procedural information. In the literature, dif-
ferent effects from different types of scaffolds have been 

described (e.g., Wu and Looi [77]), with general prompts 
(similar to the supportive information used in this study) 
stimulating metacognitive activities, like self-monitoring, 
and specific prompts stimulating reflection on domain-
related tasks and task-specific skills. Two explanations for 
our findings come to mind: first and foremost, reading 
the procedural information during task execution takes 
time by itself that immediately adds to the time to vital 
interventions. Secondly, the supportive information may 
stimulate learners to go back to the standard approach 
they have learned, helping them back on track.

Regarding self-monitoring (hypothesis 3a), in contrast 
to our findings comparing the adaptive and nonadaptive 
group, we found significantly reduced self-monitoring 
with tailored supportive information. This contrasts with 
previous research in non-game environments, where 
increases in self-regulation have been observed with adap-
tive scaffolding, either provided by human tutors [8, 78] 
or through rule-based artificial intelligence [38]. Visual 
inspection of our data and further exploratory post hoc 

Fig. 8  Help-seeking actions. Participants for whom procedural information is tailored (blue) seek help less often compared to participants 
for whom procedural information is not tailored (red)
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analysis suggested that the presence of supportive infor-
mation in itself increased the frequency of self-monitoring, 
while tailored scaffolding had no significant effects on self-
monitoring frequency. This finding should be confirmed in 
an appropriately powered study, possibly combining inter-
action trace measures of SRL with other measures such as 
systematic observations [79], think-aloud protocols [80], 
micro-analytic questions [81], or eye-tracking data [82].

Help-seeking (hypothesis 3b) decreased with tailored 
procedural support. Participants who did not require 
procedural support and did not receive it, as well as those 
who did require procedural support and did receive it, 
sought help less often. Possibly, the tailored procedural 
information accurately provided the information the par-
ticipants needed; hence the provision of help did not add 
much. We found no improvements in test performance 
(hypothesis 4) and learner engagement (hypothesis 5) 
with tailored scaffolding, likely because the analyses in 
the nonadaptive group had insufficient power for these 
single-timepoint outcomes.

Our study had several strengths. We included students 
from three different universities in a double-blinded ran-
domized study design. The study intervention provided 
multiple scenarios and we measured performance on sev-
eral dimensions, including transfer test performance and 
retention. To our knowledge, this study is the first one to 
investigate the effects of adaptive scaffolding on learning 
performance as well as transfer performance in the con-
text of game-based learning. However, our findings must 
be interpreted in light of the following limitations.

The first limitation regards the occurrence of coin-
cidental tailored scaffolding in the nonadaptive group. 
As described above, this reduced the study’s power in 
comparing adaptive and non-adaptive support. To avoid 
this, future research should attempt to increase the dif-
ferences between the adaptive and nonadaptive groups. 
For example, a different sampling strategy aiming to 
increase heterogeneity would decrease the incidence of 
adaptive scaffolding. This could involve recruiting more 
expert learners (e.g. residents) as well as novices, and not 

Fig. 9  Self-monitoring behavior increases when supportive information is available, regardless of whether the information was tailored 
to the player’s behavior
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matching the pairs by experience. Other options include 
implementing a larger number of unique input vari-
ables for the adaptive algorithm or applying a different 
research design. This design could incorporate an adap-
tive group, a control group that does not receive any scaf-
folding, and another group receiving random scaffolding. 
The second limitation concerns the application of the 
adaptive scaffolding in the next scenario, instead of pro-
viding the scaffolding in the scenario where the need for 
scaffolding was identified. The timing of scaffolding influ-
ences its effects. For example, study material provided 
before play has proven more effective than the other way 
around [63]. This may have attenuated the effects of the 
scaffolding provided in our study.

A final limitation in our study was the use of a single-
item measure for cognitive load. We chose the Paas 
single item mental effort scale because it is sensitive to 
small changes [83, 84], easy to use and barely interrupts 
gameplay. However, we failed to/did not find significant 
correlations between cognitive load and self-regulatory 
activities although we expected increases in germane 
load. A differentiated cognitive load measure could pro-
vide more insight into how adaptive scaffolding increases 
germane load, meaning the active resources invested by 
the learner, compared with the load produced by the task 
itself, consisting of intrinsic and extraneous load. Apart 
from the previously mentioned 10-item scale by Lep-
pink et al. [16], the 8-item questionnaire by Klepsch and 
Seufert [85] and the 15-item scale developed by Kriegl-
stein et al. [86] appear promising instruments that distin-
guish between active and passive mental load. Challenges 
in using these questionnaires involve the larger num-
ber of items, interrupting game flow, as well as the lim-
ited reliability for measuring germane cognitive load 
and sensitivity to changes in item formulation that may 
be necessary for translation. As germane cognitive load 
is dependent on intrinsic cognitive load [87, 88], adding 
physiological measures (see Ayres et  al. [21]) to non-
intrusively provide insight into intrinsic cognitive load 
may help clarify the role of scaffolding in relation to task 
complexity.

Conclusions
We could not find evidence to support our hypothesis 
of improved performance and lower cognitive load in 
adaptive scaffolding in game-based learning. Explora-
tory analyses do suggest a possible effect of tailored 
scaffolding. To further build on these findings, we offer 
three recommendations for research in adaptive scaf-
folding in game-based learning/GBL?. First, researchers 
should choose their research design and adaptive algo-
rithm carefully to prevent coincidental adaptive scaffold-
ing in the control group, as described above. Secondly, 

we recommend a more granular approach to measuring 
cognitive load, combining multi-item subjective meas-
urements with physiological measurements. Finally, the 
specific effects of adaptive scaffolding should be inves-
tigated, including different effects for various types of 
adaptive scaffolding. Options include incorporating eye 
tracking, think-aloud protocols, or cued recall interviews 
to elucidate the mechanisms through which adaptive 
scaffolding influenced self-regulation in the game.

Tailored scaffolding shows promise as a technique to 
optimize cognitive load in GBL. When designing an adap-
tive GBL or computer-based simulation environment, we 
recommend that educators and developers work towards 
adaptive scaffolding as a team from the start. This will 
facilitate the establishment of reliable indicators of perfor-
mance, self-regulation, and learning, as well as the design 
of appropriate, preferably real-time, scaffolding. For edu-
cators or developers who are unable to implement adap-
tive scaffolding, supportive information may be provided 
as a static scaffold to improve self-monitoring.

To conclude, this study into the effects of scaffolding 
in a medical emergency simulation game suggests that 
implementing tailored scaffolding in GBL may optimize 
cognitive load. Tailored supportive and procedural infor-
mation have different effects on self-regulation and learn-
ing performance, necessitating further research into the 
effects of adaptive support as well as the design of well-
calibrated algorithms. Considering the pivotal role of 
cognitive load in learning, these findings should inform 
instructional design both in game-based learning as well 
as other educational formats.
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