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Abstract
Background Writing multiple choice questions (MCQs) for the purpose of medical exams is challenging. It requires 
extensive medical knowledge, time and effort from medical educators. This systematic review focuses on the 
application of large language models (LLMs) in generating medical MCQs.

Methods The authors searched for studies published up to November 2023. Search terms focused on LLMs 
generated MCQs for medical examinations. Non-English, out of year range and studies not focusing on AI generated 
multiple-choice questions were excluded. MEDLINE was used as a search database. Risk of bias was evaluated using a 
tailored QUADAS-2 tool.

Results Overall, eight studies published between April 2023 and October 2023 were included. Six studies used 
Chat-GPT 3.5, while two employed GPT 4. Five studies showed that LLMs can produce competent questions valid for 
medical exams. Three studies used LLMs to write medical questions but did not evaluate the validity of the questions. 
One study conducted a comparative analysis of different models. One other study compared LLM-generated 
questions with those written by humans. All studies presented faulty questions that were deemed inappropriate for 
medical exams. Some questions required additional modifications in order to qualify.

Conclusions LLMs can be used to write MCQs for medical examinations. However, their limitations cannot be 
ignored. Further study in this field is essential and more conclusive evidence is needed. Until then, LLMs may serve 
as a supplementary tool for writing medical examinations. 2 studies were at high risk of bias. The study followed the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
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Background
There is a global shortage of clinical practitioners and 
increasing demand for medical professionals. This need 
presents significant challenges in the healthcare system 
[1–3]. In response, the number of medical schools and 
students has been rising worldwide [4, 5], leading to an 
increase in the demand for written tests.

Multiple choice questions (MCQs) are considered pop-
ular for testing applied knowledge in the basic and clini-
cal sciences [6]. When constructing good quality MCQ, 
the agreed upon model comprises a stem, the initial part 
of the question, which is clearly written, containing all the 
information necessary to answer the question. The lead-
in question contains only one answer that is clearly the 
best choice, followed by a number of optional answers 
called “distractors”. The distractors should be plausible to 
those without detailed knowledge of the subject, reduc-
ing the chance of guessing the correct answer [7]. MCQs 
should cover a broad range of the curriculum and be rep-
resentative of the material that students are expected to 
learn.

The item difficulty, i.e. difficulty level of the MCQs, 
should also be appropriate for the level of the learner. 
They should be challenging enough to discriminate 
between those who understand the material and those 
who do not, but not so difficult as to be discouraging. 
Good MCQs should be able to discriminate between 
higher and lower performing students so that students 
who perform well on the overall exam should be more 
likely to answer the question correctly than those who 
perform poorly [8, 9, 13].

Creating multiple choice questions (MCQs) requires 
medical knowledge, conceptual integration, and avoiding 
potential pitfalls, for example, repeating the same MCQs 
in examinations from year to year, rendering the question 
less useful, or inherent imperfections called item-writing 
flaws (IWFs). A study by Rush et al. details some of the 
more common writing flaws, including mutually exclu-
sive distractors, where students can recognize that one 
of the two mutually-exclusive responses is correct, thus 
eliminating other options. Another common IWF is “lon-
gest answer is correct”, a common issue made by exami-
nation writers in an effort to ensure the correct response 
is indisputable, or use of absolute terms (always, never, 
all). Students recognize that absolute terms usually ren-
der a statement false [10]. While IWFs may appear trivial, 
they can affect the way students understand and answer 
questions [10–13]. Producing MCQs is also time con-
suming, and any application capable of automating this 
process could be highly valuable for medical educators 
[14, 15].

Amidst these challenges, advancements in natural 
language processing (NLP) are constantly discussed 
and evaluated [16], in particular, the introduction of 

OpenAI’s state-of-the-art large language models (LLMs) 
such as GPT-3.5 and GPT-4 [17, 18]. These models offer 
potential solutions to healthcare education, due to their 
human-like text understanding and generation, which 
includes clinical knowledge [19]. This could be pivotal in 
automating the creation of medically precise MCQs.

According to Bond et al. another possible application 
of AI in medical education is grading patients notes. This 
can provide additional formative feed-back for students 
in the face of limited faculty availability [20].

AI based technologies are continuously evolving, 
becoming more popular in medical education. One such 
technology is Virtual Patients (VP), which are interactive 
computer simulations of real-life clinical scenarios. They 
are used for medical training, education and assessment. 
By using AI to provide realistic patient interactions, stu-
dents can practice clinical decision-making and also 
receive feedback in a safe and controlled environment 
[21].

Medical knowledge is continually and rapidly evolv-
ing; therefore, up-to-date medical questions genera-
tion may be hard to keep up with for medical educators 
[22]. Automatically generated MCQs could be quicker 
to implement when medical knowledge changes cur-
rent practices, or when new discoveries and forefronts 
are reached. Automated MCQs could also assist medical 
students in practicing learning material with a vast data 
resource, which can supply a limitless amount of MCQs 
in a short amount of time [23]. Moreover, automated 
MCQs generation can tailor a personalized learning 
experience which can provide students with a formative 
assessment. Formative assessments allow for feedback 
which improves learning, while summative assessments 
measure learning. Formative tests were shown to 
improve classroom practice, and encourage students in 
both reflective and active review of learning material. In 
general terms, formative assessment assists students in 
developing their learning skills [20, 24, 25].

However, automating MCQs creation introduces 
potential risks, as the accuracy and quality of AI gen-
erated content is still in question [26, 27]. We aimed to 
review the literature on LLMs’ ability to generate medi-
cal questions. We evaluated their clinical accuracy and 
suitability for medical examinations in context of their 
limitations.

Methods
Literature search
On November 2nd 2023 we conducted a search identi-
fying studies describing LLMs’ applications in generating 
medical questions. Since the Chat-GPT LLM launched 
by OpenAI on November 30, 2022, we limited our 
search period to 2023. We searched PubMed/MEDLINE 
for papers with the following keywords, using Boolean 
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operators AND/ OR: large language models; GPT; Chat-
GPT; medical questions; medical education; USMLE; 
MCCQE1; board exam; medical exam. We also checked 
the references list of selected publications for more rel-
evant papers. Sections as ‘Similar Articles’ below articles 
(e.g., PubMed) were also inspected for possible additional 
articles.

Ethical approval was not required, this is a systematic 
review of previously published research, and does not 
include any individual participant information. Our study 
followed the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines. The 
study is registered with PROSPERO (CRD42023481851).

Inclusion and exclusion process
Publications resulting from the search were initially 
assessed by one author (YA) for relevant titles and 

abstracts. Next, full-text papers underwent an indepen-
dent evaluation by two authors (EK and VS) (Fig. 1).

We included full length studies describing LLMs gen-
erating medical questions published no earlier than 2023. 
Exclusion criteria included: (1) non-English language, (2) 
wrong publication type (e.g. review article, case reports 
and case series, editorial and opinion pieces, commen-
taries and letters to the editor, conference abstracts and 
presentations, technical reports and white papers, book 
chapters and monographs), (3) publication year out of 
range (4), Full-text not available, (5) duplicates, (6) no 
MCQ generation by AI. Any study in question was dis-
cussed among all authors until reaching a unanimous 
agreement. Risk of bias and applicability were evaluated 
using the tailored QUADAS-2 tool (Fig. 2).

Risk of bias and applicability were evaluated using the 
QUADAS-2 tool. (Fig. 2).

Fig. 1 Flow diagram of the search and inclusion process in the study. Flow Diagram of the Inclusion Process. Flow diagram of the search and inclusion 
process based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, November 2023
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Results
Study selection and characteristics
The initial literature search resulted in 838 articles. Eight 
studies met our inclusion criteria (Fig.  1). Most studies 
were retrospective: 6/8 (75%). One study is cross-sec-
tional and one study is prospective. Most studies used 
Chat-GPT (3.5 or 4) as an AI model of choice, other 
models evaluated included Microsoft’s Bing and Google’s 
Bard. The MCQs were produced with varying parameters 
(Table 1). Overall, 5/8 (62.5%) studies demonstrated valid 
MCQs. 6/8 (75%) of the studies utilized the latest version 
Chat-GPT 4 (Fig. 3.)

Descriptive summary of results
Cheung et al. [28] were the first, and so far, the only 
study to compare LLM to humans in MCQs writing. 
Chat-GPT 3.5 plus generated the MCQs. The reference 
for the prompt were two standard undergraduate medi-
cal textbooks: Harrison’s Principles of Internal Medicine 
the 21th edition for medicine [29], and Bailey and Love’s 
Short Practice of Surgery 27th Edition for surgery [30]. 
Only four choices were given per question. Also, only 
text and knowledge-based questions were generated. No 
modification to the MCQs was allowed after generation. 
Chat-GPT 3.5 performed relatively well in the task. The 
overall time required for the AI to generate 50 MCQs was 
21 min. This is about 10% of the total time human writ-
ing required (211  min). However, the questions written 

Table 1 General features of the articles in the study
Study Author Month Journal Study design AI 

tool
1 Sevgi 

et al.
April Neurosurgical 

Review
Retrospective Chat-

GPT 
3.5

2 Biswas May Annals of 
Biomedical 
Engineering

Retrospective Chat-
GPT 
3.5

3 Agar-
wal et 
al.

June Cureus Cross-sectional 
study

Chat-
GPT,
Bard, 
Bing

4 Ayub 
et al.

August Cureus Retrospective Chat-
GPT 
3.5

5 Cheung 
et al.

August PLOS ONE Prospective Chat-
GPT 
3.5 
plus

6 Totlis 
et al.

August Surgical and 
Radiologic 
Anatomy

Retrospective Chat-
GPT 
4

7 Han et 
al.

October Medical 
Teacher

Retrospective Chat-
GPT 
3.5

8 Klang 
et al.

October BMC Medical 
Education

Retrospective Chat-
GPT 
4

Summary of the articles in the literature that applied AI for generating medical 
questions, November 2023

Fig. 2 Risk of Bias and Applicability Judgments in QUADAS-2. QUADAS-2 table for potential bias and applicability. Risk of bias and applicability were 
evaluated using the tailored QUADAS-2 tool, November 2023
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by humans were far better. Both in terms of quality and 
validity, outperforming the AI in a total score of 30 (60%) 
eligible MCQs (Table 2).

Klang et al. [31] performed blind assessment of the 
generated questions. They did not disclose to the evalu-
ators whether the MCQs origin was AI. At first, they 
asked Chat-GPT 4 to create MCQs on the topic of inter-
nal medicine. They used as reference (few-shot learning) 
a former exam of the same subject. The MCQs had four 
possible answers, with the correct answer marked with 
an asterisk. At first, the generated MCQs were short with 
no clinical background. This required a second prompt-
ing of the AI model, specifically requesting the AI to 
create MCQs with clinical history. The study showed 
promising results, with the majority of MCQs deemed 
valid as exam questions (Table 2).

In a cross-sectional study, Agarwal et al. [32] compared 
different LLMs. They compared Chat-GPT 3.5/Bard/
Bing in MCQs generating capability. They used as refer-
ence the 11-module curriculum for physiology, created 
by The Indian National Medical Commission (NMC). 
The authors requested in the prompt to Generate five 
difficult reasoning-based MCQs, fitting levels of Bach-
elor of Medicine, and Bachelor of Surgery (MBBS). Chat-
GPT’s generated MCQs were significantly more valid 
than the other AI tools examined in the study. However, 

the difficulty level was lower compared to Bard and Bing 
(Table 2).

Ayub et al. [33] focused on medical board examina-
tion for Dermatology. They utilized Chat-PDF to upload 
entire PDF files into a Chat-GPT 3.5 portal. The reference 
used was “Continuing medical education” (CME) articles, 
taken from the Journal of the American Academy of Der-
matology (JAAD). This reference is considered high-yield 
review material for the American Board of Dermatol-
ogy Applied Exam (ABD-AE). This study’s prompt was 
not detailed in the paper. The three parameters to evalu-
ate the MCQs were accuracy, complexity, and clarity. 
Only 16 (40%) of the generated questions were applica-
ble (Table  2). The rest were unclear 9 (22%), inaccurate 
5 (13%) or had low complexity 10 (25%) (Table 3). Sevgi 
et al. [34] asked Chat-GPT 3.5 to prepare three questions 
with answers and explanations at a level appropriate for 
a neurosurgery board exam. There was no independent 
evaluation of the MCQs.

Han et al. [35] instructed Chat-GPT 3.5 to write three 
MCQs, each containing clinical background and lab val-
ues. Each time they requested Chat-GPT to rephrase the 
question. First, for a different correct answer and then for 
an increased level of difficulty. There was no independent 
evaluation of the MCQs.

Totlis et al. [36] asked Chat-GPT 4 to generate MCQs 
on the topic of anatomy. In the prompt they requested 

Fig. 3 Illustration of multiple-choice questions (MCQs) generation and summary of preliminary results. A graphical illustration of MCQs generation and 
preliminary data. Upper row images were created using Chat-GPT 4 and DALI, illustrating the MCQs generation process via a large language model. The 
images created in the bottom row showcase preliminary data results, November 2023
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increasing difficulty and matching correct pairs. There 
was no independent evaluation of the MCQs. Biswas [37] 
requested in the prompt to prepare MCQs for USMLE 
step 1 exam. There was no independent evaluation of the 
MCQs.

All studies presented some faulty questions that were 
deemed inappropriate for medical exams. Some ques-
tions required additional modifications in order to qual-
ify (Table  3). We included in additional files examples 
from each study, demonstrating valid MCQs as well as 
faulty MCQs for various reasons (Supplementary Table 
1.)

Discussion
In this study we explored large language Models (LLMs)’ 
applicability in generating medical questions, specifically 
multiple choice questions (MCQs) for medical examina-
tions. The studies we reviewed did not continue to test 
the generated MCQ in a real-world setting, i.e. with 
medical students. In order to truly evaluate the feasibility 
of LLMs application in the medical education field, this 
should be the next logical step.

MCQs are an essential component of medical exams, 
used in almost every aspect of medical education [12, 
13], yet they are time consuming and expensive to create 

Table 2 Key parameters investigated in each study
Author No.

of
MCQs

Tested
vs.
Human

Medical
Field

Questions
Evaluated
By

Performance
Scores

Sevgi et al. 3 No Neurosurgery Evaluated by the
author according
to current literature

2 (66.6%) of the questions
were accurate

Biswas 5 No General N/A N/A
Agarwal et al. 320 No Medical Physiology 2 Physiologists p value validity < 0.001 for:

 Chat-GPT vs. Bing < 0.001
 Bard vs. Bing < 0.001
p value of difficulty < 0.006
Chat-GPT vs. Bing 0.010
Chat-GPT vs. Bard 0.003

Ayub et al. 40 No Dermatology 2 board certified
dermatologists

16 (40%) of questions valid for exams

Cheung et al. 50 Yes Internal Medicine/Surgery 5 International
medical experts
and educators

Overall performance:
 AI score 20 (40%) vs. Human score 30 (60%)
 Mean difference -0.80 ± 4.82
Total time required:
 AI 20 min 25 s vs. Human 211 min 33 s

Totlis et al. 18 No Anatomy N/A N/A
Han et al. 3 No Biochemistry N/A N/A
Klang et al. 210 No Internal Medicine

Surgery
Obstetrics & Gynecology
Psychiatry
Pediatrics

5 Specialist
physicians in the
tested fields

Problematic questions by field:
 Surgery 30%
 Gynecology 20%
 Pediatrics 10%
 Internal medicine 10%
 Psychiatry 0%

Summary of key parameters investigated in each study, November 2023

Table 3 Present faulty questions generated by the AI
Author Medically

Irrelevant
Questions

Invalid
for
Medical
 Exam

Inaccurate/Wrong
Question

Inaccurate/Wrong
Answer
or
Alternative answers

Low
Difficulty
Level

Sevgi et al. N/A N/A N/A 1 (33.3%) N/A
Biswas N/A N/A N/A N/A N/A
Agarwal et al. N/A Highly valid N/A V/A Somewhat difficult
Ayub et al. 9 (23%) 24 (60%) 5 (13%) 5 (13%) 10 (25%)
Cheung et al. 32 (64%) 28 (56%) 32 (64%) 29 (58%) N/A
Totlis et al. N/A 8 (44.4%) N/A N/A 8 (44.4%)
Han et al. N/A N/A N/A N/A 3 (100%)
Klang et al. 2 (0.95%) 1 (0.5%) 12 (5.7%) 14 (6.6%) 2 (0.95%)
Summary of faulty questions generated by the AI, November 2023
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[38]. The possibility of AI generated questions can pro-
vide an important opportunity for the medical commu-
nity and transform the way written tests are generated. 
Using LLMs to support these tasks can potentially save 
time, money, and reduce burnout, especially in a system 
already sustaining itself on limited resources [39].

Benefits of AI-generated educational content
Burn-out, poor mental health, and growing personal dis-
tress are constantly studied in clinical practitioners [40]. 
However, academic physicians experience a unique set 
of additional challenges, such as increased administra-
tive work, less time with patients, and increased clinical 
responsibilities. As a result, they have less time for tradi-
tional academic pursuits such as research and education 
[41–43]. In the famous words of Albert Einstein: “Bureau-
cracy is the death of any achievement”.AI can potentially 
relieve medical educators from tiresome bureaucracy and 
administrative work, allowing them to focus on the areas 
that they view as most personally meaningful and avoid 
career dissatisfaction [42, 44].

Moreover, AI-generated MCQs can assist medical stu-
dents by creating personalized learning experience, while 
accessing current up-to-date information [45]. These are 
only a few examples of the benefits of AI in the genera-
tion of medical MCQs, and new areas for its utility are 
continuously discovered.

Drawbacks of AI-generated educational content
Nowadays, AI continues to evolve, becoming more inte-
grated in various medical fields [46]. AI performance 
is fast, efficient and with what seems like endless data 
resources [47]. In almost every study we reviewed, LLMs’ 
execution was more than satisfactory with the consensus 
that AI is capable of producing valid questions for medi-
cal exams. Presented here are examples for valid MCQs 
generated in the studies:

Example 01 “Which of the following is a negative symp-
tom of schizophrenia?”

(A)  Hallucinations.
(B)  Delusions.
(C)  Anhedonia.
(D)  disorganized speech.

Example 02 “What is the anatomical term for the socket 
in the pelvic bone where the femur articulates?”

(A)  Acetabulum.
(B)  glenoid cavity.
(C)  foramen magnum.
(D)  fossa ovalis.

However, while these models show promise as an educa-
tional tool, their limitations must be acknowledged.

One notable limitation is a phenomenon known as 
“hallucination” [48]. This occurs in a wide variety of sce-
narios, resulting in outputs that lack logical consistency 
or completely unfactual information [49]. This phenom-
enon is unacceptable for MCQs. Issues in MCQs genera-
tion can arise from AI hallucinations and beyond, such as 
inappropriate MCQ complexity to the material, multiple 
correct answers and other inaccuracies. Presented here 
are examples for faulty MCQs generated by the AI:

Example 03 “Which of the following vessels is NOT a 
component of the Circle of Willis?”

(A)  Anterior cerebral artery.
(B)  Posterior communicating artery.
(C)  Middle cerebral artery.
(D)  Vertebral artery.
(E)  Superior cerebellar artery.

In the above mentioned MCQ both D and E are correct.

Example 04 “Which of the following is a characteristic 
feature of melanoma?”

(A)  Uniform color.
(B)  Smooth borders.
(C)  Symmetry.
(D)  Irregular pigmentation.

The above-mentioned MCQ was deemed as low com-
plexity for a standard exam, after a rigorous evaluation 
by a board-certified specialist in this field. The ability of 
AI to integrate contextual and sensory information is still 
not fully developed, as well as its understanding of non-
verbal cues or body language. Furthermore, racial bias in 
medical education is a serious issue [50]. Inherent bias in 
data and inaccuracies of AI generated educational con-
tent is troubling, and could perpetuate a grave affliction 
of the medical education system [51, 52].

Another consideration is the logistics necessary to 
implement AI in healthcare and education. New tech-
nologies require training, commitment and investment in 
order to be maintained and managed in a sustainable way. 
Such a process can take time and energy [53]. In addition, 
careful consideration of prompt crafting must be a requi-
site for AI generated MCQs application in medical edu-
cation. In each study, we examined the process of crafting 
the MCQs. We noticed a wide range of approaches to 
writing the prompts. In some studies, additional modi-
fications took place in order to improve the validity of 
the questions. This emphasizes the importance and 
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sensitivity of prompts, and the need for training educa-
tors and students in AI literacy and prompt engineering.

Prompt-engineering may be a task that requires spe-
cific training, so that the prompt is phrased correctly and 
the MCQs quality is not impaired. A good way for clini-
cal practitioners and medical educators to enhance the 
quality of their prompts, is to first familiarize themselves 
with LLMs and understand the fundamentals of machine 
learning. General guidelines for optimizing prompts sug-
gest trying to be as specific as possible, provide appropri-
ate setting and context when phrasing the prompt, ask 
open ended questions, and request examples in order 
to clarify the meaning of a concept or idea [54]. A poor 
prompt for example is “Tell me about heart disease.” 
This prompt is not specific enough, and a good way to 
improve this prompt is to add details, for example “What 
are the most common risk factors for coronary artery 
disease?”

Particular concerns in regards to applications of AI in 
medical education are ethics and data privacy [55]. The 
current literature is limited on how to guide medical 
educators, ensuring that they are using AI ethically and 
responsibly in their teaching. Accordingly, awareness of 
the complexities of ethics and data privacy while using AI 
in medical education is called for. According to Masters 
(2023), these complexities include data gathering, ano-
nymity and privacy, consent, data ownership, security, 
data and algorithm bias, transparency, responsibility, 
autonomy, and beneficence [56].

Equally important limitation of AI integration in edu-
cation is accountability. The “black box” of AI models 
refers to the fact that much of the internal workings of 
the system are invisible to the user. Medical educators 
might use the AI to generate an exam, write the input and 
receive the output, but the system’s code or logic cannot 
be questioned or explained [57].

An additional aspect to consider is the longstanding 
concern of AI replacing human jobs, particularly within 
the medical workforce [58]. This thought process could 
cause resistance to AI utility and integration in clinical 
practice. This notion is unlikely in the near future and 
possibly ever. There is a quality to human interaction in 
care that cannot be replaced by machines. But, distrust in 
AI technology is yet another challenge to its implementa-
tion [59]. In light of this concern, it’s important to take 
into consideration medical educators and students’ per-
ception of AI and LLMs on their application in medical 
education. Banerjee et al. examined postgraduate trainee 
doctors’ perception on the impact of AI on clinical edu-
cation, with overall positive perception of AI technolo-
gies’ impact on clinical training [60].

In contrast, a recent study showed that even though AI 
is currently progressing towards clinical implementation, 
there was a lack of educational opportunities about AI in 

medicine among medical trainees [61]. When consider-
ing future research in this field, not only should the LLMs 
performance be studied, but also the understanding and 
acceptance of this technology among educational staff 
and students. There should be a continuous conversa-
tion about how humans and AI can work together, for 
instance in the sense of computer-aided diagnosis.

Perhaps one of the biggest concerns of AI application 
in medical education is impairing students’ critical think-
ing. According to Van de Ridder et al., self-reflection and 
criticism are crucial for a medical student’s learning pro-
cess and professional growth. In a reality where a student 
can delegate to Chat-GPT tasks such as writing personal 
reflection or learning experiences, the students deny 
themselves of the opportunity to self-reflect and grow as 
physicians [62].

Lastly, all except for one study we examined [28], did 
not compare the AI generated MCQs with human written 
MCQs, and none of the studies tested the AI generated 
MCQs in a real-world setting, i.e., testing medical stu-
dents. We believe this is the next required step in perfect-
ing LLMs as a tool to assist in medical exam generation. 
A paper published after our search period by Laupichler 
et al. conducted this comparison in student performance 
in answering AI vs. human generated MCQs [63]. They 
found no statistically significant difference in item diffi-
culty between AI generated MCQs and human generated 
questions, but discriminatory power was statistically sig-
nificantly higher in humans than LLM questions.

Application of AI generated MCQs in medical educa-
tion is still in its early stages. Although it shows much 
promise, it is imperative to take into consideration the 
significant shortcomings and challenges such application 
entails. AI should be used wisely and responsibly while 
integrating it into the medical education domain.

Limitations
Our review has several limitations. Due to heterogene-
ity in study design and data, we were unable to perform 
a meta-analysis. Our search yielded a low number of 
results (eight). Only one author rated the initial results.

In addition, a notable limitation is the methodologi-
cal quality of some of the analyzed studies. Most of the 
studies are retrospective in nature. Future longitudinal 
studies could help in understanding the long-term effec-
tiveness and impact of LLMs in medical education. None 
of the questions were image or graph based, which is an 
integral part of medical exams. Three studies did not base 
their prompt on a valid medical reference, such as pre-
vious exams or approved syllabus. Three studies did not 
evaluate the questions after they were generated. Two 
studies were at high risk of bias.

We limited our search to PubMed/MEDLINE. Also, 
since Chat-GPT was launched by OpenAI on November 
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30, 2022, we restricted our search period to 2023. We did 
not expect to find relevant studies on the application of 
LLMs in medical education in earlier years. We acknowl-
edge the fact that expanding the search could provide a 
more comprehensive overview of the development and 
use of LLMs in medical education.

Furthermore, we excluded non-English papers, thereby 
preventing a more global comprehensive perspective on 
cultural difference in LLMs application in education.

We recognize these choices narrow our review’s scope. 
This might exclude various relevant studies, possibly lim-
iting diverse insights.

Conclusion
AI-generated MCQs for medical exams are feasible. The 
process is fast and efficient, demonstrating great promise 
in the future of medical education and exam preparation. 
However, their use warrants cautious and critical evalu-
ation. Awareness of AI limitations is imperative in order 
to avoid misuse and deterioration of medical education 
quality. We strongly suggest that further research should 
be conducted to determine the long-term effectiveness 
and impact of AI generated MCQs in comparison to 
traditional educational methods, as well as testing their 
acceptance and understanding among the medical educa-
tion community. Until more advancements are achieved, 
AI should be viewed as a powerful tool best utilized by 
experienced professionals.
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