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Abstract 

Background  The Progress Test Medizin (PTM) is a 200-question formative test that is administered to approximately 
11,000 students at medical universities (Germany, Austria, Switzerland) each term. Students receive feedback on their 
knowledge (development) mostly in comparison to their own cohort. In this study, we use the data of the PTM to find 
groups with similar response patterns.

Methods  We performed k-means clustering with a dataset of 5,444 students, selected cluster number k = 5, and 
answers as features. Subsequently, the data was passed to XGBoost with the cluster assignment as target enabling 
the identification of cluster-relevant questions for each cluster with SHAP. Clusters were examined by total scores, 
response patterns, and confidence level. Relevant questions were evaluated for difficulty index, discriminatory index, 
and competence levels.

Results  Three of the five clusters can be seen as “performance” clusters: cluster 0 (n = 761) consisted predominantly 
of students close to graduation. Relevant questions tend to be difficult, but students answered confidently and cor-
rectly. Students in cluster 1 (n = 1,357) were advanced, cluster 3 (n = 1,453) consisted mainly of beginners. Relevant 
questions for these clusters were rather easy. The number of guessed answers increased. There were two “drop-out” 
clusters: students in cluster 2 (n = 384) dropped out of the test about halfway through after initially performing well; 
cluster 4 (n = 1,489) included students from the first semesters as well as “non-serious” students both with mostly 
incorrect guesses or no answers.

Conclusion  Clusters placed performance in the context of participating universities. Relevant questions served as 
good cluster separators and further supported our “performance” cluster groupings.
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Background
Progress Testing is a cross-sectional and longitudinal 
assessment that provides a distinctive and verifiable 
measure of student knowledge growth and effectiveness 
([1] and references therein). Students take the test peri-
odically throughout their studies. Compilation of the 
test follows a fixed content blueprint, with graduate-
level questions resulting in different but comparable 
tests [2, 3]. The longitudinal nature of the test enables 
monitoring a student’s progress through to gradua-
tion. The cross-sectional nature allows for comparison 
of students within the same cohort and across cohorts 
or universities, as the test is identical for all students. 
Thus, progress tests are a rich source of feedback for 
individuals, cohorts, and universities [4–7].

In Germany, the ‘Progress Test Medizin’ (PTM) in 
medical education was jointly introduced by Char-
ité  -  Universitätsmedizin Berlin (Charité) and Wit-
ten/Herdecke  University in 1999. Today, the PTM 
consortium administers a progress test consisting of 
200 multiple-choice questions each term to approxi-
mately 11,000 students from 17 universities in Ger-
many, Austria, and Switzerland. The PTM is based on 
a two-dimensional blueprint that maps each question 
to an organ system and a medical subject [8]. Students 
answer the questions based on acquired knowledge 
and motivation. They have 180  min to complete the 
test and may skip questions. Starting 2018, about half 
of the participating universities have added “certainty” 
(or “confidence”) rating to their exam environments. 
Students indicate their confidence in their answers on a 
3-point Likert scale (“I am very sure”, “I am fairly sure”, 
“I am guessing”) [9] henceforth referred to as confi-
dence level.

The PTM is a formative assessment in which low test-
taking effort does not usually result in consequences. 
However, low test-taking effort may lead to an underes-
timation of student performance and proficiency, which 
in turn may lead to negatively biased overall scores 
that may compromise the validity of the test results 
[10, 11]. A set of criteria based on the work of Schütt-
pelz-Brauns et  al. [12] and Karay et  al. [13] is applied 
to identify test scores that are due to “low test-taking 
effort”, as these should be distinguished from those that 
are due to “insufficient achieved knowledge”.

Students receive detailed, individualized feedback 
that reflects their current knowledge and knowledge 
gains for each organ system and medical subject. This 
feedback is based on numerical scores compared to 
individual cohorts to account for differences in curricu-
lum. Additional feedback relates one’s performance to 
the knowledge of all students across terms, academic 
semesters, and universities [1, 4, 14].

A total score does not indicate which cohort a student 
belongs to or which academic semester they are in, as the 
increase in knowledge is gradual and not incremental. In 
addition, total scores cannot be used to infer question-
level responses: scores from questions of different con-
tent with different confidence levels and difficulty indices 
may add up to the same total score. Surveys on PTM have 
shown that students wish to compare their performance 
to that of other participating universities [15, 16]. We aim 
to identify groups of students by inferring response pat-
terns using only the response status, correctness of, and 
confidence in all answers, excluding pre-defined criteria 
such as test-taking effort (“seriousness”), cohorts, and 
curricular differences across universities. Educational 
data mining approaches have been shown to help identify 
underlying structures in educational data [17] and pre-
dict student performance ([18] and references therein). 
Wang et al. (2021) applied a Markov chain model to iden-
tify latent states in the longitudinal trajectories of medi-
cal students from one medical school [19].

Since we want our identified groups to be independent 
from cohorts, clustering is an obvious option. Clustering 
algorithms identify groups aka clusters, whose objects are 
more similar to each other than to objects in other clus-
ters. Moreover, they provide better insight into complex 
data [20]. Clustering has been used to group students 
according to their proficiency level, mainly to support 
their learning [21, 22].

We then aim to identify those PTM questions that 
had the greatest impact on the clustering. We examine 
those in more detail in terms of intended competence 
level, difficulty index, and discrimination index in order 
to increase our understanding of the identified clusters. 
Hence, we classify the data using the clusters as targets. 
We use an iterative boosting algorithm that combines 
a set of simpler models, each with limited predictive 
power (“weak learners”) [23, 24]. Here, misclassified 
input data is (mostly) weighted higher in subsequent 
iterations to promote learning of the algorithm. The 
overall result is more accurate than each weak learner 
alone [25, 26]. For example, gradient boosting trees 
have been used in the analysis of massive open online 
courses to identify the most important features for 
either success or failure of students ([27] and references 
therein). Classification is followed by the explainer 
algorithm SHapley Additive Explanation (SHAP) [28], 
which allows the derivation of the importance of fea-
tures per class.

In summary, our goal is to identify unknown underly-
ing patterns using the correctness of and confidence in 
the answers to the PTM questions, disregarding a stu-
dent’s university or academic semester, as well as the 
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student’s presumed seriousness of participation. To 
achieve this, we apply clustering followed by classifica-
tion and explanation to obtain both new information 
about differentially performing groups and relevant PTM 
questions that distinguish the groups.

Materials and methods
In this section, we introduce the pipeline we followed 
to identify groups aka clusters based on test responses.   
Figure 1 provides an overview of the analysis workflow.

Data pipeline
Input data
Eight universities of the PTM consortium using confi-
dence rating agreed to participate in this study. PTM data 
from the winter term 2020 were used, comprising 5,852 
PTM tests from students across eleven academic semes-
ters. Students were anonymized, universities were pseu-
donymized. The “seriousness” of each participation was 
obtained from the general analysis of said data. Appendix 
Fig.  1 shows the percentage of correct answers per stu-
dent grouped by semester.

The PTM data held the graded answers to each of the 
200 questions ordered by their appearance in the test 
(columns) for each student (rows). Grades were com-
posed of correctness and confidence. Questions were 
answered either correctly, incorrectly, or not at all. Stu-
dents indicated their confidence level in each of their 

answers as “I am very sure” (short: “sure”), “I am fairly 
sure” (“likely”), or “I am guessing” (“guessed”) [9].

Each question had a difficulty index and discrimina-
tion index. Both were test-specific. The percentage of 
students who answered the question correctly yields the 
difficulty index (correct [%]) [29, 30]. The higher the dif-
ficulty index, the easier the question. The discrimination 
index (point biserial correlation [31]) indicates how well a 
question discriminates a high scoring student from a low 
scoring student. The discrimination index ranges from 
-1 to 1 [30]. A well discriminating question usually has a 
discrimination index greater than 0.3 [32].

A field expert assigned each question to one of two 
competence levels (“apply”, “recall”). “Apply” questions 
include a brief clinical or laboratory vignette to be inter-
preted or analyzed, whereas “recall” questions test the 
student’s knowledge of a topic [29].

Preprocessing
Only students from academic semesters one to ten who 
answered at least one question were included in the final 
dataset. Students in their eleventh academic semester 
were not included because their participation is volun-
tary and most of the participating universities do not 
offer the PTM beyond the tenth academic semester.

For clustering, confidence and correctness had to be 
converted into metric values. We assigned an initial 
score of 3 points for “sure” answers, 2 points for “likely” 

Fig. 1  Pipeline flowchart. This flowchart shows the data preprocessing and analysis steps with quality control measures that were followed in this 
study
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answers, and 1 point for “guessed” answers, with positive 
scores for correct answers and negative scores for incor-
rect answers. We then adjusted the scoring to maintain 
the relative distances of the mean percent correct (diffi-
culty index) for each confidence level (Appendix Table 3). 
Hence, “sure” answers were scored + (correct) or - (incor-
rect) 3 points, “likely” answers were scored + or -1.8, and 
“guessed” answers were scored + or  -0.6; unanswered 
questions were scored 0. The total score for a student was 
calculated by summing the individual scores for all 200 
questions. Hence, the total score had a possible range 
from -600 to 600.

Analysis pipeline
Algorithms
In our analysis setting, each test per student was an 
observation, featuring the metrics of scored confidence 
and correctness of each question. The pipeline was 
implemented in Python (version 3.8.3 [33]) and consisted 
of three algorithms: First, we used clustering to detect the 
underlying patterns. Second, we trained a classifier on 
the clustered data. Third, we applied an explainer algo-
rithm on these results to extract the relevant features, i.e., 
questions which distinguished each cluster from the oth-
ers. The resulting accuracy of the classifier was also used 
as an evaluation parameter for the clustering algorithm.

Clustering  We used the k-means to cluster our data. 
K-means tries to partition the dataset into k distinct non-
overlapping clusters. It assigns observations to a cluster 
such that the Euclidean distance between the observa-
tions and the cluster’s centroid is at a minimum [34]. An 
optimal number of clusters k leads to stable, meaningful 
and interpretable clusters. Interpretability and meaning-
fulness can decrease with too few, but also with too many 
clusters [35]. We determined the number of clusters 
using the elbow method with the Euclidean distance as 
the distortion score. The KElbowVisualizer function from 
the Yellowbrick package [36] returns the optimal cluster 
number k for an explored range of potential cluster num-
bers. We evaluated the clusters based on the returned k 
for interpretability before deciding on the final k. Since 
k-means is known to converge to a local minimum [37], 
we ran k-means 200 times with our final k. We then 
selected the run with the best Calinski-Harabasz score 
(CHS). The CHS represents the ratio of within-cluster to 
between-cluster dispersion. The higher the score, the bet-
ter the cluster separation [38]. Additionally, the accuracy 
of the classifier further down the pipeline served as an 
additional performance measure (see below).

Classification  We performed multiclass classifica-
tion [39]. Input for classifiers were features and targets. 

Here, the features were the same as the input for the clus-
tering algorithm; the targets were the clusters assigned 
by k-means. The dataset was split into a training data-
set with 75% of the data and a testing dataset with 25% 
of the data using sklearn [39]. The Gradient Boosting 
classifier XGBoost [40] was used for classification. The 
default gbtree served as the booster and multi:softprob 
as the learning objective for predicting each data point 
belonging to each class. The learning rate was set to 0.2 
and early stopping was selected to avoid overfitting. All 
other parameters were left at default. We used mlogloss, 
which returns the logistic loss in a multiclass dataset [39, 
41] as evaluation metric. The performance of the trained 
model on the testing dataset was evaluated using the 
overall accuracy as the performance metric. This step was 
repeated 100 times with random train-test-splits. The 
results from the run with the highest accuracy served as 
input for the explainer.

Explainer  We used the TreeSHAP method of the 
SHAP library to estimate the features’ relevance [42]. 
The average of the absolute SHAP values represents the 
global importance of each feature for each class (here: 
each of our clusters) [43]. For each cluster, we selected 
the 20 questions with the highest absolute SHAP value 
as the 20 most relevant questions. We related these ques-
tions to their position in the test, their difficulty index, 
their discrimination index, and their mapping to the 
intended competence.

Results
Preprocessed dataset
We removed 408 students who  did not meet our inclu-
sion criteria during preprocessing. Thus, our final data-
set included 5,444 students from eight universities. The 
number of students per academic semester ranged from 
N = 383 in semester 6 to N = 942 in semester 3 (Appendix 
Table 1). Most of the students (N = 3,077) came from the 
same university, while the number of students from the 
other seven universities ranged from N = 152 to N = 526 
(Appendix Table 2).

Of the 200 questions provided, 110  were of compe-
tence “recall” and 90 were of competence “apply”. The 
mean ± standard deviation of the difficulty index and the 
discrimination index were 34.08 ± 17.12 and 0.42 ± 0.12, 
respectively. A discrimination index greater than 0.3 was 
obtained for 165 questions (histogram of all discrimina-
tion indices: Appendix Fig. 2).

Clustering
Based on the elbow method, the optimal number of clus-
ters was k = 5 (Appendix Fig.  3). With this cluster size, 
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k-means was run 200 times (descriptive statistics: Appen-
dix Table  4). CHS differed by only 2.5 with median of 
215.04. We selected the best run with a CHS of 215.08. 
The corresponding cluster assignments were chosen for 
further analysis.

All clusters contained students from all ten academic 
semesters. However, each cluster showed a tendency to 
peak at a certain academic semester. Three of the clusters 
were characterized by different levels of performance, 
while two clusters show a mixture of performance and 
dropping out of the test. In the following, we present 
descriptive information about the clusters, first for the 
“performance” clusters and then for the “drop-out” clus-
ters. A visualization of the clusters can be seen in Fig-
ure  2 (academic semester distribution, total scores) and 
Figure  3 (confidence and correctness per student) with 
the exact values in Appendix Table  5. Appendix Fig.  4 
and Appendix Fig. 5 show cluster to academic semester 
relation.

The “performance” clusters were clusters 0, 1, and 3, as 
shown in Figure 2. Cluster 0 (n = 761) contained students 
who were mainly close to graduation. These students 
had the highest mean total score (± standard deviation) 
of 243.45 (± 48.95); they also had a high proportion 
of correct answers labeled as “sure” (Figure  2, Appen-
dix Table  7). Cluster 1 (n = 1,357) mainly consisted of 

advanced students, and cluster 3 (n = 1,453) consisted of 
those who were in their early semesters, with a peak at 
the third semester and were therefore considered begin-
ners. These clusters had mean scores of 135.23 (± 33.87) 
and 42.60 (± 33.85), respectively.

Cluster 2 (n = 384), the smallest cluster, contained 
mostly students close to graduation who drop out about 
halfway through the test. These students answered 
enough questions and remained in the test long enough 
to be considered serious. Cluster 2 could be classified as 
late "drop-outs". The mean total score for this cluster was 
75.68 (± 41.85). Cluster 4 (n = 1,489) contained mainly 
the lowest scoring students, i.e., students who did not 
answer enough questions with the accuracy and confi-
dence needed to score higher. They either skipped many 
questions or provided mostly “guessed” answers if they 
completed the test at all. The peak was at the first semes-
ter (Figure  2). This cluster also included 590 of the 596 
students classified as “non-serious”. The mean total score 
was -18.09 (± 43.25).

Considering their very high number of unanswered 
questions compared to clusters 0, 1, and 3, clusters 2 
and 4 could be regarded as “drop-out” clusters. Although 
cluster 4 also included a high number of guesses, for ease 
of distinction, we will refer to these two clusters as “drop-
out” clusters for the remainder of the paper.

Fig. 2  Distribution of academic semesters per cluster and mean total score per cluster. Clusters are sorted from left to right in descending order by 
the mean total score. Each column shows general overviews for each cluster by academic semester. While the upper bar plots show the number of 
students, the lower scatterplots show the total scores. Each point in the scatterplot is the total score of one student. Gray points are participations 
considered serious; orange points are participations considered non-serious
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The main difference between the “performance” clus-
ters and the “drop-out” clusters was the number of unan-
swered questions. The “performance” clusters averaged 
5.94 unanswered questions for cluster 0, 12.67 for cluster 
1, and 13.49 for cluster 3, while the two “drop-out” clus-
ters averaged 103.71 unanswered questions for cluster 2 
and 97.08 for cluster 4.

The mean results per cluster and confidence level 
showed that students in the first three clusters (clusters 
0, 1, 2) had above-average self-monitoring accuracy at all 
confidence levels (Figure  4, Appendix Table  6); cluster 
3 showed a near-average self-monitoring accuracy and 
in cluster 4 self-monitoring accuracy was below average 
with a high standard deviation.

Classification
The splits consisted of 4,083 observations for training 
and 1,361 for testing. The splitting was performed 100 
times with consecutive training of the boosting algo-
rithm. The model accuracies ranged from 0.855 to 0.899 

with a median of 0.876. We used the model with the 
highest accuracy (0.899) for further analysis. We also 
obtained the corresponding weighted F1 scores [44], 
which represents the harmonic mean between weighted 
precision and weighted recall, which ranged from 0.856 
to 0.899. The weighted F1 score of the selected models 
was also 0.899. Appendix Table 8, Appendix Table 9, and 
Appendix Fig. 6 show precision and recall, in addition to 
the aforementioned metrics, for all runs including the 
selected model.

Explainer
All relevant questions in the “performance” clusters 
had a discrimination index above 0.3, and almost all of 
them exceeded the test average (0.4). A large variation 
was found in the difficulty index. Figure  5 and Figure  6 
show the difficulty index, competence level, and dis-
crimination index of the 20 most relevant questions. For 
clusters 0 and 1, the "relevant questions" were predomi-
nantly answered correctly and with confidence “sure”. 

Fig. 3  Distribution of confidence and correctness per cluster. Blue colors represent correctly answered questions, red colors represent incorrectly 
answered questions. The shades of color indicate the level of confidence the student had in their answer. Beige represents unanswered questions. 
The upper plots are heat maps showing the scores for each answer for each student in the respective cluster (y-axis) ordered from left to right by 
the position of the question in the test (x-axis). The boxplots in the lower plots show how often a student answered with what confidence and 
correctness for each cluster. Thus, each boxplot includes all participating students in that cluster
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They differed in terms of difficulty index and compe-
tence level. Of the 20 most relevant questions that distin-
guished cluster 0 from the other clusters, 13 (65%) were 
of competence level “apply” and only seven (35%) were 
of competence level “recall”. This is noteworthy because 
in this PTM run, 45% of the questions were “apply” 
questions and 55% were “recall” questions. The 20 most 
relevant questions showed an above-average discrimi-
nation index and a slightly lower difficulty index (“more 
difficult”) than the mean difficulty index of all questions 
in this test. For the relevant questions in cluster 1, the 
ratio “apply”:“recall” was reversed (7:13 or 35%:65%). 
The difficulty index of these  questions was on average 
higher  (i.e.,"easier" questions) than the mean difficulty 
index of all questions in this PTM run, but above average 
in terms of discrimination index.

The relevant questions in cluster 3 were above aver-
age in both difficulty index and discrimination index. 
However, the response pattern was different: Students 
answered the “easier” questions correctly with high con-
fidence and “guessed” the difficult questions incorrectly. 
Here, the ratio “apply”:“recall” equaled that of cluster 1 
(35%:65%).

The relevant questions for the two “drop-out” clusters 
showed different characteristics. For cluster 2, seven 
(35%) of the relevant questions were “easier”, and were 
located in the second half of the test. However, cluster 2 
students did not answer them. 12 (60%) of the remaining 
13 relevant questions were in the first quarter of the test 
and were mostly answered correctly.

For cluster 4, relevant questions were located through-
out the test and were “easier” questions. Cluster 4 stu-
dents either did not answer or wrongly “guessed” these. 

The SHAP values for all questions per cluster can be seen 
in Appendix Table 10.

Discussion
We explored the response behavior of PTM students to 
identify groupings of students disregarding test-taking 
effort, cohorts, and possible curricular differences, but 
solely based on their performance. To do this, we used a 
clustering algorithm to detect underlying patterns, fol-
lowed by a boosting classifier. We then passed the model 
obtained from classification to an explainer that com-
puted the relevance of each question for each cluster. We 
selected the 20 most relevant questions per cluster.

These relevant questions should always be considered 
in conjunction with the corresponding response pat-
terns, as shown by two examples from Figure  5: (1) the 
students in cluster 3 answered the “easier” relevant ques-
tions correctly with high confidence and guessed the 
“more difficult” relevant questions incorrectly; (2) ques-
tion 110 is relevant for clusters 0, 1, and 3. The question 
was answered mostly “sure” and correctly by students in 
cluster 0, answered “likely” and correctly by students in 
cluster 1, and guessed incorrectly by students in cluster 3.

Parameters and performance measurements
The performance measurements for the multiple runs 
of the clustering and classifier algorithms yielded values 
in close and reasonable ranges. The accuracy of about 
90% suggests that the classifier was able to learn well the 
assignment of the response patterns to the corresponding 
clusters. We conclude that the analysis pipeline provides 

Fig. 4  Self-monitoring accuracy per cluster. Each plot shows the mean (± 1 standard deviation) proportion split by confidence relative to the 
chance level of 23.53 (dashed line) and the total mean per confidence (“sure” = 79.93, “likely” = 56.65, “guessed” = 36.18; gray line)
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meaningful and interpretable results without hyperpa-
rameter tuning.

Cluster
Our clustering yielded three “performance” clusters and 
two “drop-out” clusters. Our "performance” clusters 
divided the course of study into three parts: beginners, 
advanced, and close to graduation. They reflected the 
patterns found for example by Cecilio-Fernandes et  al. 

(2016) in their research on progress tests [45]. There, 
medical students in their early years perform better on 
simple “recall” questions and medical students closer 
to graduation perform better on “apply” questions. Our 
pipeline distinguished cluster 0 students from students 
of other clusters by the high proportion of correctly 
answered “apply” questions. Similarly, students in clus-
ters 1 and 3 were identified by their response patterns, 
which included a higher proportion of “recall” questions 

Fig. 5  Difficulty index of each question highlighting the 20 most relevant questions per cluster. The questions are ordered by their position in 
the test with the 20 most relevant questions per cluster highlighted. Each cluster is represented by two graphs. In the upper graph, the relevant 
questions are colored according to their competence level (“apply” = purple, “recall” = green) and plotted against the difficulty index (correct [%]). 
In the lower graph blue indicates correctly answered questions and red indicates incorrectly answered questions plotted against the confidence 
scores. The larger the dots, the more students answered the same way
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and, specifically for cluster 3, a higher number of incor-
rectly guessed answers. Kämmer et  al. (2020) found no 
differences in self-monitoring accuracy across semesters, 
with the exception of first-semester students, who were 
less accurate [9]. Our results support their findings for 
clusters 0 and 1. The mean self-monitoring accuracy of 
cluster 3 was slightly lower than the mean self-monitor-
ing accuracy of clusters 0 and 1 (Figure 4) and the mean 
self-monitoring accuracy reported by Kämmer et  al. 
(2020) [9]. However, cluster 3 included also students 
beyond their first semester.

The following was found on the “drop-out” clusters: the 
pattern of responded questions in cluster 2 was similar 
to that in clusters 0 and 1, which suggests that most of 
the students would likely have achieved scores compara-
ble to those of clusters 0 and 1 had they completed the 
test. Additionally, students in clusters 0, 1, and 2 showed 
similar self-monitoring accuracy in confidence (Figure 4). 
Since traditional numerical considerations underestimate 
student knowledge in cluster 2, our clusters add a new 
perspective to this formative assessment.

Cluster 4 contained almost all students whose par-
ticipation was considered “non-serious” and the first 
semester students who mainly guessed, which amounts 
for more than half of the first semester students. Pro-
posing two subgroups in this cluster is supported by 
cluster 4’s high standard deviation in self-monitoring 
accuracy. It would be questionable to refer to this clus-
ter as “drop-outs”. Wang et  al. (2021) identified four 
latent states in students’ progress test scores: Novice, 
Advanced Beginner I, Advanced Beginner II, and Com-
petent [19]. Our “performance” clusters resemble their 

states. Our first semester students in cluster 4 might 
resemble their "novice" state. Unlike the PTM, their 
progress test contributes to students’ grades as well as 
to decisions about progression in the course of study 
[19]. Our "drop-out" clusters reflect the purely forma-
tive nature of the PTM.

Order of questions
There will always be students who just answer the first 
half of the questions and therefore fall in cluster 2. We 
wonder if most of the relevant questions identified by 
the explainer algorithm for the “performance” clusters 
will inevitably be located after the first quarter of the 
test, regardless of their content.

Inclusion in PTM feedback
Our clusters provide an addition to traditional cohort-
based numerical feedback. Grouping similarly per-
forming students across cohorts and universities can 
help create a profile that focuses on their strengths 
and weaknesses. Such a personalized analysis is a 
known factor for effective feedback (e.g. [46] and ref-
erences therein) and is requested by PTM students, as 
shown by PTM surveys [15, 16]. For example, students 
can visually compare their response patterns with the 
response patterns of all clusters and thus get a better 
overview of their current level of knowledge. Students 
in cluster 2 gain a better estimation of their perfor-
mance on the first half of the test than by using only 
standard numerical feedback and averaged scores.

Fig. 6  Competence distribution for the 20 most relevant questions for each cluster. The upper plots show the competence level (“apply”, “recall”) 
of the 20 most relevant questions. In contrast to all other clusters, the competence distribution in cluster 0 is higher for “apply” questions. The lower 
plots show all questions in terms of their difficulty index (correct [%]) and discrimination index. The relevant questions are highlighted in their 
respective competence colors
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Limitations
An imbalance in the data originated from the fact that 
the largest university administers the test every term 
and admits new students twice a year and smaller uni-
versities have an uneven distribution of participating 
students and not all offer the PTM every term. Since 
we want to represent reality, we consider it necessary to 
preserve the original dataset structure.

In the original data, each student’s answer was rep-
resented by an identifier consisting of the confidence 
in the given answer and its correctness. For clustering, 
we translated these categories into numerical values, 
knowing that this transition may have an impact on our 
clustering results. Our scoring assignment was based 
on a mathematical background. We find the resulting 
clusters reasonable and interpretable for our purpose.

Future research
In this study, we only included the students’ scores in our 
analysis. Future research could include other parameters 
to adjust for certain distractions. For example, one fea-
ture that could be included is the amount of time a stu-
dent spends on a question. This could help to find new 
cluster indicators and possibly give us even more insight 
into the differences between certain groups of students.

Longitudinal analysis of both students and relevant 
questions is also of great interest. A student’s retention in 
a cluster, or transition from one cluster to another during 
the course of study, could provide information about stu-
dents’ knowledge gains and infer developmental patterns 
[19], which would be consistent with the goal to provide 
feedback to address students’ future development as 
described in the literature (e.g. [47–49] and references 
therein). For example, early indicators could be used to 
identify individuals in need of support.

To investigate whether the order of questions in a test has 
an effect on identifying the relevant questions for the clus-
ters, we propose the following approaches for a next test:

 → offer the same questions in the same order
 → offer the same questions in a different order
 → of a former test, replace the non-relevant ques-
tions and keep the position of the relevant questions
 → place all relevant questions of the “performance” 
clusters of a former test at the beginning of the test

 → offer a shorter test consisting of the relevant ques-
tion of the “performance” cluster of a former test

Conclusion
We found three different “performance” clusters and 
two “drop-out” clusters.

Students in the clusters differed in terms of stage of study, 
knowledge of easier and more difficult questions, and confi-
dence in their answers and accuracy of this self-monitoring. 
The “performance” clusters divide the course of study into 
beginners, advanced and close to graduation. Students in 
one “performance” cluster are distinguished by their high 
proportion of correctly answered relevant “apply” questions. 
Students in the other two “performance” clusters are identi-
fied by their higher proportion of relevant “recall” questions, 
for example. The analysis of a “drop-out” cluster suggests 
that most students of that cluster had the chance to be in the 
“performance” clusters had they completed the test.
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