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Abstract 

Background  Many physicians do not know how to accurately interpret test results using Bayes’ rule. As a remedy, 
two kinds of interventions have been shown effective: boosting insight and boosting agency with natural frequen-
cies. To boost insight, test statistics are provided in natural frequencies (rather than conditional probabilities), without 
instructions on how to use them. To boost agency, a training is provided on how to translate probabilities into natural 
frequencies and apply them in Bayes’ rule. What has not been shown is whether boosting agency is sufficient or if rep-
resenting test statistics in natural frequencies may additionally boost insight to maximize accurate test interpretation.

Methods  We used a pre/posttest design to assess test interpretation accuracy of 577 medical students before and 
after a training on two Bayesian reasoning tasks, one providing conditional probabilities, the other natural frequen-
cies. The pretest assessed baseline abilities versus the effect of natural frequencies to boost insight. After participants 
received a training on how to translate conditional probabilities into natural frequencies and how to apply them 
in Bayes’ rule, test interpretation skills were assessed using the same tasks again, comparing the effects of training-
induced agency with versus without additionally boosting insight (i.e., test statistics in natural frequencies versus 
conditional probabilities).

Results  Compared to the test question formatted in conditional probabilities (34% correct answers), natural frequen-
cies facilitated Bayesian reasoning without training (68%), that is, they increased insight. The training on how to use 
natural frequencies improved performance for tasks formatted in conditional probabilities (64%). Performance was 
maximal after training and with test statistics formatted in natural frequencies, that is, with a combination of boosting 
insight and agency (89%).

Conclusions  Natural frequencies should be used to boost insight and agency to maximize effective use of teaching 
resources. Thus, mandating that test statistics are provided in natural frequencies and adopting short trainings on 
how to translate conditional probabilities into natural frequencies and how to apply them in Bayes’ rule will help to 
maximize accurate test interpretation.

Trial registration  The study was a registered with the German Clinical Trial Registry (DRKS0​00087​23; 06/03/2015).
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To increase “individuals’ own decision-making compe-
tences” [1], two educational approaches have been dif-
ferentiated in the behavioral sciences: boosting of insight 
and boosting of agency. Whereas the former approach 
refers to information formats that facilitate retrieval 
of decision-relevant information and increase people’s 
insight in how to apply them without instruction, the lat-
ter refers to trainings that convey specific problem-solv-
ing skills to strengthen people’s agency to implement a 
certain behavior or decision.1 In this article, we apply this 
distinction to interventions aimed at improving accu-
rate medical test interpretation. Specifically, we assume 
that the statistical format of natural frequencies [2] can 
be used to boost insight (to represent test statistics in an 
easy-to-understand format that facilitates test interpre-
tation without instructions), to boost agency (to explain 
how to use test statistics to interpret test results), or both 
(when used to represent test statistics and explain how to 
use them). Rather than siding with any single approach, 
we suggest that all three approaches have value. The 
question is when to use which to maximize effective use 
of teaching resources [3].

To improve Bayesian reasoning, which is needed for 
accurate test interpretation, natural frequencies have 
been successfully implemented to boost both insight and 
agency. Since Gigerenzer and Hoffrage published their 
seminal paper in 1995, a meta-analysis of 35 articles has 
shown that representing test statistics as natural frequen-

cies rather than conditional probabilities can “improve 
Bayesian reasoning without instructions,” that is natu-
ral frequencies boost insight [2, 4–6]. Follow-up stud-
ies demonstrated that natural frequencies can also be 
used to boost agency and “teach Bayesian reasoning in 
less than two hours” [7–14] and that, as a consequence, 
“the degree of improvement was. .. larger than. .. without 
training, that is, by merely presenting information in nat-
ural frequencies” [7]. What has not been shown, however, 
is whether using natural frequencies as a combination 
to boost both insight and agency is more effective than 
either intervention by itself. In addition to replicating the 

effects of natural frequencies with and without instruc-
tion, the primary goal of this paper is thus to determine 
whether natural frequencies should be used to boost 
insight, agency, or both to maximize the effectiveness of 
teaching test interpretation skills to future health pro-
fessionals. We shortly explain the rationales underlying 
accurate test interpretation before we present the study 
and discuss implications for medical education.

Background
A woman with a positive mammogram will want to 
know: Does that mean I have cancer? Studies have 
repeatedly shown that a majority of physicians do not 
know how to calculate the probability of a disease given 
a positive test result, that is, the test’s positive predictive 
value or PPV [15–17]. If physicians lack these basic sta-
tistical skills, evidence-based medicine (EBM) and accu-
rate risk communication with patients remain illusory.

To calculate PPVs, physicians should adhere to Bayes’ 
rule, a formula that prescribes how to correctly combine 
the a priori prevalence of the disease to be tested with 
the likelihood of the test to yield correct positive results 
(sensitivity) and false positive results (1–specificity). If we 
assume that the sensitivity of a mammogram is 90%, the 
false positive rate is 9%, and the prevalence of breast can-
cer is 1% (i.e., 99% of the women have no breast cancer), 
Bayes’ rule prescribes the following calculation:

In 1995, Gigerenzer and Hoffrage showed that repre-
senting conditional probabilities (e.g., sensitivity, speci-
ficity) as natural frequencies, defined as frequency counts 
that preserve base rates, facilitates Bayesian reasoning. 
Applied to the mammogram example, we obtain:

•	 1% prevalence translates as “Of 1,000 women, 10 
have breast cancer, 990 do not”.

•	 90% sensitivity as “Of 10 women with cancer, 9 will 
test correct positive”.

•	 9% false-positive-rate as “Of 990 healthy women, 89 
will test false positive”.

Importantly, when inserted into Bayes’ rule, the results 
are identical with both formats as shown in Fig.  1. How-
ever, computations are simplified and require fewer 

PPV =
prevalence x sensitivity

prevalence x sensitivity+ (1− prevelance) x false − positive rate

PPV =
.01 x.9

.01 x.9+ .99 x.09
≈ 9%

1  We shall mention that Hertwig and Grüne-Yanhoff [30] have referred to the 
representation of test statistics in natural frequencies as a short-term boost 
that increases competencies in a specific context but not beyond a given set 
of problems. They further distinguished short-term boosts from long-term 
boosts, such as teaching people how to represent test statistics as natural fre-
quencies. To avoid confusion, we acknowledge this parallel conceptual dis-
tinction here but prefer to use the terms ‘boosting of insight’ and ‘boosting of 
agency’ instead, because they are more explanatory, and we did not intend to 
test short term and long term effects in this study.
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steps with natural frequencies because they preserve 
base rates (i.e., the natural frequencies at the low-
est level of the tree in Fig. 1 add up to the reference class 
of 9 + 1 + 89 + 901 = 1,000 women) and can be directly 
entered into Bayes’ formula without requiring additional 
calculations.

As stated above, recent meta-analyses have shown that 
test statistics that are presented in natural frequencies rather 
than conditional probabilities reliably boost insight and 
“improve Bayesian reasoning without instructions” [4–6]. 
Moreover, several training studies using natural frequencies 
to boost agency [7–14] showed that “the degree of improve-
ment was. .. larger than. .. without training” [7]. What is not 
known, however, is whether a training on how to use natural 
frequencies is sufficient to boost medical students’ Bayesian 
reasoning skills or if representing test statistics in natural 
frequencies rather than conditional probabilities can addi-
tionally boost their insight into the test statistics and how to 
use them. We test the following hypotheses:

H1: When natural frequencies are used to boost 
insight into relevant test statistics, test interpretation 
will be more accurate than with conditional probabilities 
(i.e., without training). H1 replicates existing evidence 
concerning the insight-inducing effect of natural fre-
quencies without training [5, 6].

H2: When natural frequencies are used to boost 
agency, test interpretation with conditional probabilities 
(the training only condition) will be a) more accurate 
than conditional probabilities without training (because 
students will have learned how to translate probabilities 
into frequencies) (H2a) and b) more accurate than natu-
ral frequencies without training (because they will also 
have learned how to directly enter the latter to facilitate 

Bayesian calculations) (H2b). That is, H2a replicates the 
established effect of training (a boost of agency without 
an additional boost of insight), whereas H2b suggests 
that training (a boost of agency) is superior to providing 
natural frequencies (a boost of insight) alone [7, 8].

H3: When natural frequencies are used to boost both 
insight and agency, test interpretation will be maximally 
accurate, because natural frequencies do not have to first 
be calculated (insight) and students will know how to 
directly enter them into Bayes’ rule (agency).

Methods
To develop the boost of agency for our study, we followed 
previous training studies, most of which used some kind 
of visual aid to convey the principles underlying natural 
frequencies or, more generally, how to represent test sta-
tistics so that the relationships between the prevalence 
and the number of correct positives and false positives 
become evident [7–14]. Although visualizations of natu-
ral frequencies seem to improve accurate test interpreta-
tion in general [6, 7, 10, 11, 18], there is thus far mixed 
evidence concerning which visualization works best [19–
21]. Thus, we relied on the most commonly used visual 
representation so far and designed a 1-hour training that 
“showed participants how to translate probability infor-
mation into. .. a frequency tree” [7]. As part of the train-
ing intervention, medical students were also taught how 
to use these natural frequency trees to implement Bayes’ 
rule and calculate PPVs und negative predictive values 
(NPV) for common medical tests. To enhance the exter-
nal validity and students’ motivation to participate in the 
training, we chose tests that reflected ongoing course 
work and provided actual estimates for test sensitivities 

Fig. 1  Comparison of two statistical formats for calculating the positive predictive value (PPV) of a mammogram for women in the general 
population. The left tree shows four conditional probabilities at the lowest level compared to four natural frequencies in the tree on the right. Whereas 
the conditional probabilities are normalized, that is, they do not add up to 100%, the natural frequencies are not and add up to the reference class 
of 9 + 1 + 89 + 901 = 1,000 women. This difference simplifies Bayesian calculations at the bottom of the Figure needed to infer the PPV of the test. 
Note. Numbers are rounded.
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and specificities and the population-specific prevalence of 
the diseases to be tested. The training format is designed 
for groups of up to 20 participants and consists of the fol-
lowing four steps (for a detailed description see Table 1):

(1)	 a 5-minute introduction to Bayes’ rule and how to 
apply it to medical test interpretation, the challenges 
to calculate test statistics using conditional probabili-
ties, and the advantages of using natural frequencies.

(2)	 a 5-minute explanation of how to translate conditional 
probabilities into natural frequencies using frequency 
trees and how to use them to implement Bayes’ rule 
and calculate PPVs and NPVs of medical tests.

(3)	 a 30-minute practical exercise where students apply 
the principles and frequency tree representations 
learned in Step 1 and 2 to calculate PPVs and NPVs 
for actual medical tests and patient populations 
(selected to match students’ course work).

(4)	 a 20-minute interactive presentation of the results 
from Step 3 and discussion of potential implications 
for medical practice and the communication of test 
results with patients.

To test the hypotheses, we used a within-subjects 2 × 2 
design with test questions being administered in two 
formats (conditional probability versus natural frequen-
cies) and either with or without the training intervention. 
Specifically, we used a pre-posttest to assess medical stu-
dents’ Bayesian reasoning skills immediately before and 
after the 1-hour training session, using the same two 
Bayesian reasoning problems, one in natural frequen-
cies, the other in conditional probabilities (see Table 2). 
Both problems are taken from the Berlin Numeracy Test, 
a 4-item test2 validated to assess people’s untimed abil-
ity to reason with numbers (i.e., their numeracy [22];) 
and test Bayesian reasoning in a non-medical domain, 
measuring transfer learning. That is, they measure the 
ability to apply general principles rather than to replicate 
domain-specific solutions acquired during the training. 
Also, because performance is typically worse if different 
tasks are used for training and testing, the chosen test 
questions should provide a strong test of the effects of the 
training intervention [23]. Participants received the ques-
tions in the same order during both pre- and posttest and 
could take as much time as they needed to solve them.

The pretest was designed to test H1 by replicating the 
insight-boosting effect of representing test statistics as 
natural frequencies (the insight condition) versus con-
ditional probabilities (the baseline condition; see [4–6]) 

without training. The posttest with conditional prob-
abilities was designed to test H2, that is, whether using 
natural frequencies as a training (the agency condition) 
helps participants outperform both their pretest with 
conditional probabilities (i.e., the baseline condition, test-
ing the effect of training alone; H2a) and the pretest with 
natural frequencies (i.e., comparing the effect of train-
ing with the insight-boosting effect of natural frequen-
cies without training; H2b) [7, 8]. Finally, the posttest 
with natural frequencies was intended to test H3, that is, 
whether the combination of boosting both insight and 
agency provides an additional benefit over the agency 
condition (i.e., conditional probabilities after the train-
ing) and the insight condition (i.e., providing natural fre-
quencies before the training) alone.

Participants were recruited between 2015 and 2016 
from three consecutive cohorts, all of which were in their 
5th, and final, year of undergraduate medical training. 
To our knowledge, the medical curriculum contained 
no prior systematic training of Bayes rule and how to 
apply it to test interpretation, but their prior knowledge 
of statistical reasoning likely differed based on what they 
had learned about probability theory in high school. The 
study took place as part of a hands-on seminar about sta-
tistical reasoning for medical students. Instructors were 
recruited from various institutes of the university hospi-
tal and had not interacted with the students on this topic 
prior to the seminar. Whereas participation in the semi-
nar was compulsory as part of the medical curriculum, 
participation in the study was voluntary. No incentives 
were provided for participation. The study was approved 
by the medical school’s data protection authorities and 
ethics committee (EA/067/15; 12/11/2014) and regis-
tered with the German Clinical Trial Registry (DRKS0​
00087​23; 06/03/2015).

Out of the 822 students in the three cohorts, 203 (25%) 
did not attend the classes or did not participate. Of the 
remaining 619 (75%) students, 42 participated only once, 
leaving 577 students (70%) who participated during both 
pretest and posttest to be included in the analysis.3 A 
total of 67 (12%) of the 577 participants did not report 
age or sex. Of the remaining 510 students, 61% were 
female with a mean age = 25.2 (SD = 3.1; range = 21–42). 
10 participants missed to answer one of the two test 
questions (one person missed the question with condi-
tional probabilities during both pre and posttest; six did 

2  The two additional items assess other statistical competencies and were thus 
not used for this study.

3  We excluded 42 students from the analysis who came late for class or left 
early and thus could not participate in both tests and missed parts of the 
training. Of these excluded students, 6 indicated no sex or age. The remaining 
students we excluded were slightly more likely to be female (67% were female) 
than those included in the analysis (61% were female) but similar in terms of 
age (mean = 25.8 vs. 25.2; SD = 3.3 vs. 3.1; range = 22–33 vs. 21–42).

https://drks.de/search/en/trial/DRKS00008723
https://drks.de/search/en/trial/DRKS00008723
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not answer the question with conditional probabilities 
during the posttest; during the pretest, two participants 
missed a question with natural frequencies; one other 
person missed the question with condition probabilities). 
We performed analyses with and without these partici-
pants and counting the void answers as missing or incor-
rect, but the pattern of the results remained identical. 
For the data we present here, we provide the most con-
servative estimate of effectiveness and count the missing 
answers as incorrect.

To test H1 and H2, we ran planned comparisons of 
the respective conditions in a binomial generalized lin-
ear mixed model with the within-subject manipulations 
(boosts for insight and/or agency) as fixed effects and 
participant ID as a random effect with varying inter-
cept. To assess H3, we tested the interaction of the main 
effects of boosting insight and agency. To do so, we used 
R (version 4.1.2), tidyverse (version 1.3.1) to prepare 
the dataset, lme 4 (version 1.1–27.1) to model the data, 
and multcomp (version 1.4–19) to setup the contrasts. 
We also report the corresponding odds ratios (OR) as 
a measure of effect size. To exclude regression to the 
mean effects as possible explanation of the observed dif-
ferences in pre-posttest designs [24], we report the pro-
portion of participants showing improved versus worse 
performance in the posttest. Descriptive analyses were 
performed and plotted using Microsoft Excel for Mac 
Version 16.57 (Microsoft Corp, Redmond, Washington).

Results
The analysis showed that, before the training, the per-
centage of students providing the correct answers was 
about 30 points higher for the task formatted in natural 
frequencies (68%) versus conditional probabilities (36%) 
(β = 2.45, SE = 0.19, P < .001), supporting H1. The cor-
responding Odds Ratio (OR) suggests that the odds that 
students provided a correct answer when given natural 

frequencies increased 11-fold compared to the task for-
matted in conditional probabilities (OR = 11.55, 95% CI 
[7.92, 16.87]).

After the 1-hour training intervention, the percent-
age of students with correct answers increased for the 
test question with conditional probabilities from 36% 
during the pretest to 64% during the posttest (β = 2.14, 
SE = 0.19, P < .001), confirming H2a. The odds of a cor-
rect answer increased about 8-fold after the training 
(OR = 8.53, 95% CI [5.93, 12.28]) and the proportion of 
improved answers was 173/577 (30%) compared to 8/577 
(1.4%) cases with decreased performance after the train-
ing. However, students’ performance on the posttest 
question in conditional probabilities (64%) and the pre-
test question in natural frequencies (68%) did not differ 
(β = − 0.30, SE = 0.17, P = .069; OR = 0.74, 95% CI [0.532, 
1.02]). This disconfirms H2b.

Finally, we found main effects of both statistical for-
mat (β = 1.27, SE = 0.09, P < .001; OR = 3.55, 95% CI 
[2.96, 4.26]) and training (β = 1.10, SE = 0.09, P < .001; 
OR = 3.01, 95% CI [2.53,3.58]). The interaction was not 
significant (β = − 0.02, SE = 0.07, P = .759; OR = 0.98, 
95% CI [0.84, 1.13]), but performance was maximal after 
the training and for the test question framed in natural 
frequencies (β = 3.07, SE = 0.21, P < .001), with the odds 
of a correct answer increasing about 21-fold compared 
to all other pretest and posttest conditions (OR = 21.5, 
95% CI [14.17, 32.63]). This supports H3. Descriptively, 
performance on the question using natural frequencies 
increased from 68% during the pretest to 89% during 
the posttest, where the proportion of participants with 
improved performance was 127/577 (22%) compared 
to 8/577 (1.4%) showing worse performance. The com-
bined condition also outperformed the posttest question 
with conditional probabilities with 89% to 64% correct 
answers. Figure 2 shows that the pattern of results is sim-
ilar for each of the three cohorts.

Discussion
Our study confirmed H1 replicating the effect that, com-
pared to conditional probabilities, natural frequency 
formats boost insight and facilitate Bayesian reasoning 
without training [4–6]. Unlike what we expected in H2, 
after a 1-hour training intervention on how to translate 
probabilities into natural frequencies and how to use 
them to implement Bayes’ rule, posttest performance 
with conditional probabilities showed a more differenti-
ated pattern compared to the pre-test conditions [7, 8]. 
Specifically, the agency-boosting training improved accu-
rate test interpretation with conditional probabilities 
compared to no boost (H2a). However, the combination 
of training and conditional probabilities (the boost of 
agency) did not outperform the pretest condition where 

Table 2  Bayesian reasoning tasks from the Berlin Numeracy Test 
[22] used for pre- and posttest

Bayesian reasoning task with natural frequencies Answer option

Out of 1,000 people in a small town, 500 are members 
of a choir. Out of these 500 members in a choir, 100 are 
men. Out of the 500 inhabitants that are not in a choir, 
300 are men. What is the probability that a randomly 
drawn man is a member of the choir? Please indicate 
the probability in percent.

________%

Bayesian reasoning task with conditional probabilities Answer option

In a forest 20% of mushrooms are red, 50% brown and 
30% white. A red mushroom is poisonous with a prob-
ability of 20%. A mushroom that is not red is poisonous 
with a probability of 5%. What is the probability that a 
poisonous mushroom in the forest is red?

________%
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natural frequencies were given without training (the 
boost of insight) (H2b).

One explanation for this pattern could be that parts of 
our training intervention did not work. However, per-
formance with conditional probabilities increased after 
the training, indicating that students understood how 
to translate conditional probabilities into natural fre-
quencies. Also, performance with natural frequencies 
increased after the training, suggesting that students 
learned how to use natural frequencies to implement 
Bayes’ rule. This suggests that both aspects of the train-
ing intervention have worked, and that we should revisit 
Sedlmayer and Gigerenzer’s conclusion that after a train-
ing with natural frequencies “the degree of improve-
ment…should be…larger than…without training” [7]. 
Specifically, our results suggest that a training on (a) how 
to translate conditional probabilities into natural fre-
quencies and (b) how to implement them into Bayes’ rule 
is superior to no training [7, 8], but the training alone 
is not more effective than natural frequencies without 
training. In fact, the effect of natural frequencies used to 
boost insight before the training and the effect of train-
ing (without also facilitating insight) were equal in size. 
Future studies should investigate possible explanations 
for this pattern (e.g., difficulties translating conditional 
probabilities into natural frequencies) and whether 
the training may be further improved to increase its 
effectiveness.

Finally, maximal performance was achieved after the 
training and when information was formatted in natu-
ral frequencies. This supports H3. On average 89% of 
the students performed Bayesian calculations correctly 
under the condition combining both boosts. This result 

shows that the effect of natural frequencies as a boost of 
insight can and should be augmented with a training on 
how to use them (i.e., a boost of agency) and vice versa. 
More specifically, the finding of two main effects (train-
ing and format) without interaction suggests that the 
effects of natural frequencies as a boost for insight and 
a boost for agency are additive and that one interven-
tion cannot be used to compensate for the other. This 
adds to similar findings in a parallel line of research on 
behavioral interventions called nudges, which, rather 
than conveying new insights or developing agency, 
exploit existing cognitive or behavioral tendencies (e.g., 
by setting a default to exploit people’s tendencies to 
stick with it) 31. Also for this type of intervention it was 
found that combining it with a boost of agency, that is, 
explicit explanations of why and how a behavior should 
be implemented, proves more effective than the nudge 
intervention alone [25, 26]. This suggests that the dis-
tinctions between boosts of insight, nudges, and boosts 
of agency are fruitful and more research on how to best 
combine these types of interventions in medical educa-
tion is warranted.

With respect to the present study, we wanted to 
understand when to use which of these interventions 
to maximize the effective use of teaching resources and 
improve medical students’ test interpretation skills. 
Based on our results, we can state that a combined use 
of natural frequencies as boosts of insight (i.e., by mak-
ing them the default for communicating test statistics) 
and as boosts of agency (i.e., by adopting short train-
ings on why and how to use natural frequencies) is 
the most effective approach to maximize accurate test 
interpretation.

Fig. 2  Percent of students correctly solving Bayesian reasoning tasks (N = 577) before (pretest) and after a training boost (posttest). Data are 
presented separately for each task format (conditional probabilities = outlined bars; natural frequencies = solid bars) and each of three student 
cohorts trained during three consecutive courses. Error bars reflect two standard errors above and below the observed proportions.
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Strengths and Limitations
The current study was performed in an actual class-
room setting in medical school. Although this increases 
external validity, the classroom setting did not allow us 
to systematically account for individual differences (e.g., 
related to prior exposure to statistics) or even individual 
characteristics such as age and gender (67 students chose 
not to provide information on either demographic vari-
able). For lack of control over the educational setting, 
we could also not assess the presented relationships 
over longer follow-up periods and use control groups as 
in previous training studies [7, 8]. Although this study 
provides relevant first evidence as to the additive effect 
of natural frequencies––as a boost for insight and as an 
agency-boosting training––on medical students’ Bayes-
ian reasoning abilities, future studies in more controlled 
settings should account for these limitations.

Given our pre-post study design, we cannot exclude 
that factors other than the training intervention may 
have influenced the results between pre- and posttest. 
But given the tight teaching schedule (see Table  1) and 
that pre- and posttest were administered directly before 
and after the training, history and maturation effects 
[24] seem unlikely. Similarly, we cannot exclude test-
ing effects, that is, that simply using the same test ques-
tions during pre- and posttest may have had an effect on 
accurate test interpretation during the posttest. However, 
given that many physicians do not know how to accu-
rately interpret test results using Bayes’ rule [16, 17], it 
seems implausible that a one-time exposure to two test 
questions can explain our findings and improve accurate 
test interpretation in 20 to 30% of the medical students 
as in our sample. Also, the fact that we found worse per-
formance in only 1 to 2% of the participants suggests 
that regression to the mean effects, which are typical for 
pre-posttest designs [24], cannot explain the large perfor-
mance improvements we found.

Finally, the test questions were taken from the Ber-
lin Numeracy Test, a survey instrument cross-validated 
in various cultures and populations to measure numer-
acy, that is, people’s ability to reason with numbers [22]. 
Although both questions ask for a dichotomous outcome 
(i.e., membership: yes/no; poisonousness: yes/no), they 
use a different number of characteristics to describe the 
test population in the question using natural frequencies 
(i.e., binary gender: male/female) and the question with 
conditional probabilities (i.e., three colors: red/brown/
white) (see Table 2). As a result, the question with natu-
ral frequencies may have been slightly easier to answer, 
artificially inflating the observed advantage of this for-
mat compared to conditional probabilities (with and 
without training). On the other hand, a meta-analysis, 

which reviewed all available studies comparing Bayesian 
reasoning tasks with two versus three population char-
acteristics, estimated that this difference has “a negligible 
effect on responses in the conditional probability format” 
[27]. Thus, given the large effect sizes of the observed dif-
ferences between the interventions, this limitation should 
not invalidate the main findings.

Practical implications
Previous research using the Berlin Numeracy Test has 
shown that statistical literacy tends to be higher among 
medical students and professionals compared to those 
in other fields [28]. However, when it comes to medical 
test interpretation, performance of health profession-
als seems to be low on average and unrelated to the level 
of experience [29]. Thus, to improve accurate test inter-
pretation, natural frequencies can and should be used 
to boost insight and agency of both medical students 
and more experienced physicians. Until more evidence 
becomes available, we hope that our findings (a) encour-
age policy makers to mandate the use of natural frequen-
cies formats to communicate test statistics in medical 
school and in test manuals to boost (future) health pro-
fessionals’ insight into test statistics and help interpret 
them more accurately. And (b), we hope our results con-
vince educators to implement similar or adapted training 
interventions that teach (future) health professionals how 
to translate probabilities into natural frequencies and 
boost their skills for accurate test interpretation in medi-
cal schools and/or continuing medical education. From 
a policy perspective, it will likely take longer to widely 
implement natural frequencies as the standard for com-
municating test statistics. Thus, trainings seem to be the 
first important step toward empowering health profes-
sionals to accurately interpret test results in the short-
term. All teaching and assessment materials are open 
access and can be obtained from the authors. Although 
the training intervention was designed to train under-
graduate medical students, the materials can be easily 
adapted to different levels of expertise and medical spe-
cialties by changing the tests used in step 3 of the train-
ing (see Table 1).

Conclusions
Neither boosting insight nor agency alone seem to suf-
fice to maximally increase accurate test interpretation 
with natural frequencies. Natural frequencies should 
rather be used to boost insight and agency to maxi-
mize effective use of teaching resources. Thus, man-
dating the use of natural frequencies in test manuals 
and using them as didactical formats in training inter-
ventions provides the most effective way to enable 
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more healthcare professionals to accurately interpret 
test results and, ultimately, to discuss them with their 
patients and meet the basic requirements of EBM.
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